2 resultados para Corticotropin releasing factor receptors

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One aspect of the function of the beta-arrestins is to serve as scaffold or adapter molecules coupling G-protein coupled receptors (GPCRs) to signal transduction pathways distinct from traditional second messenger pathways. Here we report the identification of Dishevelled 1 and Dishevelled 2 (Dvl1 and Dvl2) as beta-arrestin1 (betaarr1) interacting proteins. Dvl proteins participate as key intermediates in signal transmission from the seven membrane-spanning Frizzled receptors leading to inhibition of glycogen synthase kinase-3beta (GSK-3beta), stabilization of beta-catenin, and activation of the lymphoid enhancer factor (LEF) transcription factor. We find that phosphorylation of Dvl strongly enhances its interaction with betaarr1, suggesting that regulation of Dvl phosphorylation and subsequent interaction with betaarr1 may play a key role in the activation of the LEF transcription pathway. Because coexpression of the Dvl kinases, CK1epsilon and PAR-1, with Dvl synergistically activates LEF reporter gene activity, we reasoned that coexpression of betaarr1 with Dvl might also affect LEF-dependent gene activation. Interestingly, whereas betaarr1 or Dvl alone leads to low-level stimulation of LEF (2- to 5-fold), coexpression of betaarr1 with either Dvl1 or Dvl2 leads to a synergistic activation of LEF (up to 16-fold). Additional experiments with LiCl as an inhibitor of GSK-3beta kinase activity indicate that the step affected by betaarr1 is upstream of GSK-3beta and most likely at the level of Dvl. These results identify betaarr1 as a regulator of Dvl-dependent LEF transcription and suggest that betaarr1 might serve as an adapter molecule that can couple Frizzled receptors and perhaps other GPCRs to these important transcription pathways.