9 resultados para Correlation (Statistics)

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a stochastic environment, long-term fitness can be influenced by variation, covariation, and serial correlation in vital rates (survival and fertility). Yet no study of an animal population has parsed the contributions of these three aspects of variability to long-term fitness. We do so using a unique database that includes complete life-history information for wild-living individuals of seven primate species that have been the subjects of long-term (22-45 years) behavioral studies. Overall, the estimated levels of vital rate variation had only minor effects on long-term fitness, and the effects of vital rate covariation and serial correlation were even weaker. To explore why, we compared estimated variances of adult survival in primates with values for other vertebrates in the literature and found that adult survival is significantly less variable in primates than it is in the other vertebrates. Finally, we tested the prediction that adult survival, because it more strongly influences fitness in a constant environment, will be less variable than newborn survival, and we found only mixed support for the prediction. Our results suggest that wild primates may be buffered against detrimental fitness effects of environmental stochasticity by their highly developed cognitive abilities, social networks, and broad, flexible diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex diseases will have multiple functional sites, and it will be invaluable to understand the cross-locus interaction in terms of linkage disequilibrium (LD) between those sites (epistasis) in addition to the haplotype-LD effects. We investigated the statistical properties of a class of matrix-based statistics to assess this epistasis. These statistical methods include two LD contrast tests (Zaykin et al., 2006) and partial least squares regression (Wang et al., 2008). To estimate Type 1 error rates and power, we simulated multiple two-variant disease models using the SIMLA software package. SIMLA allows for the joint action of up to two disease genes in the simulated data with all possible multiplicative interaction effects between them. Our goal was to detect an interaction between multiple disease-causing variants by means of their linkage disequilibrium (LD) patterns with other markers. We measured the effects of marginal disease effect size, haplotype LD, disease prevalence and minor allele frequency have on cross-locus interaction (epistasis). In the setting of strong allele effects and strong interaction, the correlation between the two disease genes was weak (r=0.2). In a complex system with multiple correlations (both marginal and interaction), it was difficult to determine the source of a significant result. Despite these complications, the partial least squares and modified LD contrast methods maintained adequate power to detect the epistatic effects; however, for many of the analyses we often could not separate interaction from a strong marginal effect. While we did not exhaust the entire parameter space of possible models, we do provide guidance on the effects that population parameters have on cross-locus interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies specific for the beta(1)-adrenergic receptor are found in patients with chronic heart failure of various etiologies. From work presented in this issue of the JCI, we can now infer that these antibodies actually contribute to the pathogenesis of chronic heart failure. This commentary discusses mechanisms by which these antibodies may engender cardiomyopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical stimuli are important factors that regulate cell proliferation, survival, metabolism and motility in a variety of cell types. The relationship between mechanical deformation of the extracellular matrix and intracellular deformation of cellular sub-regions and organelles has not been fully elucidated, but may provide new insight into the mechanisms involved in transducing mechanical stimuli to biological responses. In this study, a novel fluorescence microscopy and image analysis method was applied to examine the hypothesis that mechanical strains are fully transferred from a planar, deformable substrate to cytoplasmic and intranuclear regions within attached cells. Intracellular strains were measured in cells derived from the anulus fibrosus of the intervertebral disc when attached to an elastic silicone membrane that was subjected to tensile stretch. Measurements indicated cytoplasmic strains were similar to those of the underlying substrate, with a strain transfer ratio (STR) of 0.79. In contrast, nuclear strains were much smaller than those of the substrate, with an STR of 0.17. These findings are consistent with previous studies indicating nuclear stiffness is significantly greater than cytoplasmic stiffness, as measured using other methods. This study provides a novel method for the study of cellular mechanics, including a new technique for measuring intranuclear deformations, with evidence of differential magnitudes and patterns of strain transferred from the substrate to cell cytoplasm and nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nolan and Temple Lang argue that “the ability to express statistical computations is an es- sential skill.” A key related capacity is the ability to conduct and present data analysis in a way that another person can understand and replicate. The copy-and-paste workflow that is an artifact of antiquated user-interface design makes reproducibility of statistical analysis more difficult, especially as data become increasingly complex and statistical methods become increasingly sophisticated. R Markdown is a new technology that makes creating fully-reproducible statistical analysis simple and painless. It provides a solution suitable not only for cutting edge research, but also for use in an introductory statistics course. We present experiential and statistical evidence that R Markdown can be used effectively in introductory statistics courses, and discuss its role in the rapidly-changing world of statistical computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New representations of tree-structured data objects, using ideas from topological data analysis, enable improved statistical analyses of a population of brain artery trees. A number of representations of each data tree arise from persistence diagrams that quantify branching and looping of vessels at multiple scales. Novel approaches to the statistical analysis, through various summaries of the persistence diagrams, lead to heightened correlations with covariates such as age and sex, relative to earlier analyses of this data set. The correlation with age continues to be significant even after controlling for correlations from earlier significant summaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional regulation has been studied intensively in recent decades. One important aspect of this regulation is the interaction between regulatory proteins, such as transcription factors (TF) and nucleosomes, and the genome. Different high-throughput techniques have been invented to map these interactions genome-wide, including ChIP-based methods (ChIP-chip, ChIP-seq, etc.), nuclease digestion methods (DNase-seq, MNase-seq, etc.), and others. However, a single experimental technique often only provides partial and noisy information about the whole picture of protein-DNA interactions. Therefore, the overarching goal of this dissertation is to provide computational developments for jointly modeling different experimental datasets to achieve a holistic inference on the protein-DNA interaction landscape.

We first present a computational framework that can incorporate the protein binding information in MNase-seq data into a thermodynamic model of protein-DNA interaction. We use a correlation-based objective function to model the MNase-seq data and a Markov chain Monte Carlo method to maximize the function. Our results show that the inferred protein-DNA interaction landscape is concordant with the MNase-seq data and provides a mechanistic explanation for the experimentally collected MNase-seq fragments. Our framework is flexible and can easily incorporate other data sources. To demonstrate this flexibility, we use prior distributions to integrate experimentally measured protein concentrations.

We also study the ability of DNase-seq data to position nucleosomes. Traditionally, DNase-seq has only been widely used to identify DNase hypersensitive sites, which tend to be open chromatin regulatory regions devoid of nucleosomes. We reveal for the first time that DNase-seq datasets also contain substantial information about nucleosome translational positioning, and that existing DNase-seq data can be used to infer nucleosome positions with high accuracy. We develop a Bayes-factor-based nucleosome scoring method to position nucleosomes using DNase-seq data. Our approach utilizes several effective strategies to extract nucleosome positioning signals from the noisy DNase-seq data, including jointly modeling data points across the nucleosome body and explicitly modeling the quadratic and oscillatory DNase I digestion pattern on nucleosomes. We show that our DNase-seq-based nucleosome map is highly consistent with previous high-resolution maps. We also show that the oscillatory DNase I digestion pattern is useful in revealing the nucleosome rotational context around TF binding sites.

Finally, we present a state-space model (SSM) for jointly modeling different kinds of genomic data to provide an accurate view of the protein-DNA interaction landscape. We also provide an efficient expectation-maximization algorithm to learn model parameters from data. We first show in simulation studies that the SSM can effectively recover underlying true protein binding configurations. We then apply the SSM to model real genomic data (both DNase-seq and MNase-seq data). Through incrementally increasing the types of genomic data in the SSM, we show that different data types can contribute complementary information for the inference of protein binding landscape and that the most accurate inference comes from modeling all available datasets.

This dissertation provides a foundation for future research by taking a step toward the genome-wide inference of protein-DNA interaction landscape through data integration.