3 resultados para Corrective shoeing

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

India has compelling need and keen aspirations for indigenous clinical research. Notwithstanding this need and previously reported growth the expected expansion of Indian clinical research has not materialized. We reviewed the scientific literature, lay press reports, and ClinicalTrials.gov data for information and commentary on projections, progress, and impediments associated with clinical trials in India. We also propose targeted solutions to identified challenges. The Indian clinical trial sector grew by (+) 20.3% CAGR (compound annual growth rate) between 2005 and 2010 and contracted by (-) 14.6% CAGR between 2010 and 2013. Phase-1 trials grew by (+) 43.5% CAGR from 2005-2013, phase-2 trials grew by (+) 19.8% CAGR from 2005-2009 and contracted by (-) 12.6% CAGR from 2009-2013, and phase-3 trials grew by (+) 13.0% CAGR from 2005-2010 and contracted by (-) 28.8% CAGR from 2010-2013. This was associated with a slowing of the regulatory approval process, increased media coverage and activist engagement, and accelerated development of regulatory guidelines and recuperative initiatives. We propose the following as potential targets for restorative interventions: Regulatory overhaul (leadership and enforcement of regulations, resolution of ambiguity in regulations, staffing, training, guidelines, and ethical principles [e.g., compensation]).Education and training of research professionals, clinicians, and regulators.Public awareness and empowerment. After a peak in 2009-2010, the clinical research sector in India appears to be experiencing a contraction. There are indications of challenges in regulatory enforcement of guidelines; training of clinical research professionals; and awareness, participation, partnership, and the general image amongst the non-professional media and public. Preventative and corrective principles and interventions are outlined with the goal of realizing the clinical research potential in India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease postprocedure atrial fibrillation recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff RFA-treated myocardium. OBJECTIVE: To determine whether intraprocedure ARFI images can identify RFA-treated myocardium in vivo. METHODS: In 8 canines, an electroanatomical mapping-guided intracardiac echo catheter was used to acquire 2-dimensional ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the intracardiac echo transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, noncontiguous lesion, or contiguous lesion. For comparison, 3 separate reviewers confirmed RFA lesion presence and contiguity on the basis of functional conduction block at the imaging plane location on electroanatomical activation maps. RESULTS: Ten percent of ARFI images were discarded because of motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesions had 75.3% specificity and 47.1% sensitivity. CONCLUSIONS: Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

People are always at risk of making errors when they attempt to retrieve information from memory. An important question is how to create the optimal learning conditions so that, over time, the correct information is learned and the number of mistakes declines. Feedback is a powerful tool, both for reinforcing new learning and correcting memory errors. In 5 experiments, I sought to understand the best procedures for administering feedback during learning. First, I evaluated the popular recommendation that feedback is most effective when given immediately, and I showed that this recommendation does not always hold when correcting errors made with educational materials in the classroom. Second, I asked whether immediate feedback is more effective in a particular case—when correcting false memories, or strongly-held errors that may be difficult to notice even when the learner is confronted with the feedback message. Third, I examined whether varying levels of learner motivation might help to explain cross-experimental variability in feedback timing effects: Are unmotivated learners less likely to benefit from corrective feedback, especially when it is administered at a delay? Overall, the results revealed that there is no best “one-size-fits-all” recommendation for administering feedback; the optimal procedure depends on various characteristics of learners and their errors. As a package, the data are consistent with the spacing hypothesis of feedback timing, although this theoretical account does not successfully explain all of the data in the larger literature.