4 resultados para Corpus (Creation, Annotation, etc.), Question Answering, Usability, User Satisfaction
em Duke University
Resumo:
BACKGROUND: Sensor-augmented pump therapy (SAPT) integrates real-time continuous glucose monitoring (RT-CGM) with continuous subcutaneous insulin infusion (CSII) and offers an alternative to multiple daily injections (MDI). Previous studies provide evidence that SAPT may improve clinical outcomes among people with type 1 diabetes. Sensor-Augmented Pump Therapy for A1c Reduction (STAR) 3 is a multicenter randomized controlled trial comparing the efficacy of SAPT to that of MDI in subjects with type 1 diabetes. METHODS: Subjects were randomized to either continue with MDI or transition to SAPT for 1 year. Subjects in the MDI cohort were allowed to transition to SAPT for 6 months after completion of the study. SAPT subjects who completed the study were also allowed to continue for 6 months. The primary end point was the difference between treatment groups in change in hemoglobin A1c (HbA1c) percentage from baseline to 1 year of treatment. Secondary end points included percentage of subjects with HbA1c < or =7% and without severe hypoglycemia, as well as area under the curve of time spent in normal glycemic ranges. Tertiary end points include percentage of subjects with HbA1c < or =7%, key safety end points, user satisfaction, and responses on standardized assessments. RESULTS: A total of 495 subjects were enrolled, and the baseline characteristics similar between the SAPT and MDI groups. Study completion is anticipated in June 2010. CONCLUSIONS: Results of this randomized controlled trial should help establish whether an integrated RT-CGM and CSII system benefits patients with type 1 diabetes more than MDI.
Resumo:
Our media is saturated with claims of ``facts'' made from data. Database research has in the past focused on how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting claims, e.g., is a claim ``cherry-picking''? This paper proposes a Query Response Surface (QRS) based framework that models claims based on structured data as parameterized queries. A key insight is that we can learn a lot about a claim by perturbing its parameters and seeing how its conclusion changes. This framework lets us formulate and tackle practical fact-checking tasks --- reverse-engineering vague claims, and countering questionable claims --- as computational problems. Within the QRS based framework, we take one step further, and propose a problem along with efficient algorithms for finding high-quality claims of a given form from data, i.e. raising good questions, in the first place. This is achieved to using a limited number of high-valued claims to represent high-valued regions of the QRS. Besides the general purpose high-quality claim finding problem, lead-finding can be tailored towards specific claim quality measures, also defined within the QRS framework. An example of uniqueness-based lead-finding is presented for ``one-of-the-few'' claims, landing in interpretable high-quality claims, and an adjustable mechanism for ranking objects, e.g. NBA players, based on what claims can be made for them. Finally, we study the use of visualization as a powerful way of conveying results of a large number of claims. An efficient two stage sampling algorithm is proposed for generating input of 2d scatter plot with heatmap, evalutaing a limited amount of data, while preserving the two essential visual features, namely outliers and clusters. For all the problems, we present real-world examples and experiments that demonstrate the power of our model, efficiency of our algorithms, and usefulness of their results.
Resumo:
BACKGROUND: Web-based decision aids are increasingly important in medical research and clinical care. However, few have been studied in an intensive care unit setting. The objectives of this study were to develop a Web-based decision aid for family members of patients receiving prolonged mechanical ventilation and to evaluate its usability and acceptability. METHODS: Using an iterative process involving 48 critical illness survivors, family surrogate decision makers, and intensivists, we developed a Web-based decision aid addressing goals of care preferences for surrogate decision makers of patients with prolonged mechanical ventilation that could be either administered by study staff or completed independently by family members (Development Phase). After piloting the decision aid among 13 surrogate decision makers and seven intensivists, we assessed the decision aid's usability in the Evaluation Phase among a cohort of 30 surrogate decision makers using the Systems Usability Scale (SUS). Acceptability was assessed using measures of satisfaction and preference for electronic Collaborative Decision Support (eCODES) versus the original printed decision aid. RESULTS: The final decision aid, termed 'electronic Collaborative Decision Support', provides a framework for shared decision making, elicits relevant values and preferences, incorporates clinical data to personalize prognostic estimates generated from the ProVent prediction model, generates a printable document summarizing the user's interaction with the decision aid, and can digitally archive each user session. Usability was excellent (mean SUS, 80 ± 10) overall, but lower among those 56 years and older (73 ± 7) versus those who were younger (84 ± 9); p = 0.03. A total of 93% of users reported a preference for electronic versus printed versions. CONCLUSIONS: The Web-based decision aid for ICU surrogate decision makers can facilitate highly individualized information sharing with excellent usability and acceptability. Decision aids that employ an electronic format such as eCODES represent a strategy that could enhance patient-clinician collaboration and decision making quality in intensive care.
Resumo:
BACKGROUND: Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. CONCLUSIONS/SIGNIFICANCE: Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.