7 resultados para Corneal biomechanics
em Duke University
Resumo:
Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.
Resumo:
Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.
Resumo:
BACKGROUND: Anterior cruciate ligament (ACL) reconstruction is associated with a high incidence of second tears (graft tears and contralateral ACL tears). These secondary tears have been attributed to asymmetrical lower extremity mechanics. Knee bracing is one potential intervention that can be used during rehabilitation that has the potential to normalize lower extremity asymmetry; however, little is known about the effect of bracing on movement asymmetry in patients following ACL reconstruction. HYPOTHESIS: Wearing a knee brace would increase knee joint flexion and joint symmetry. It was also expected that the joint mechanics would become more symmetrical in the braced condition. OBJECTIVE: To examine how knee bracing affects knee joint function and symmetry over the course of rehabilitation in patients 6 months following ACL reconstruction. STUDY DESIGN: Controlled laboratory study. LEVEL OF EVIDENCE: Level 3. METHODS: Twenty-three adolescent patients rehabilitating from ACL reconstruction surgery were recruited for the study. The subjects all underwent a motion analysis assessment during a stop-jump activity with and without a functional knee brace on the surgical side that resisted extension for 6 months following the ACL reconstruction surgery. Statistical analysis utilized a 2 × 2 (limb × brace) analysis of variance with a significant alpha level of 0.05. RESULTS: Subjects had increased knee flexion on the surgical side when they were braced. The brace condition increased knee flexion velocity, decreased the initial knee flexion angle, and increased the ground reaction force and knee extension moment on both limbs. Side-to-side asymmetry was present across conditions for the vertical ground reaction force and knee extension moment. CONCLUSION: Wearing a knee brace appears to increase lower extremity compliance and promotes normalized loading on the surgical side. CLINICAL RELEVANCE: Knee extension constraint bracing in postoperative ACL patients may improve symmetry of lower extremity mechanics, which is potentially beneficial in progressing rehabilitation and reducing the incidence of second ACL tears.
Resumo:
Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates.
Resumo:
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.
Resumo:
PURPOSE: To report a rare case of atypical fibroxanthoma (AFX) of the bulbar conjunctiva, and to compare it with previously published cases of conjunctival AFX. METHODS: A 37-year-old woman developed a growth on the bulbar conjunctiva of her left eye that increased in size and redness over 4 months and was associated with blurry vision in the left eye, occasional diplopia, irritation of the eye, and increasing tearing. The mass was surgically excised. RESULTS: Slit-lamp examination disclosed a highly vascularized conjunctival lesion with intact lustrous epithelium and a raised nodular edge encroaching on the nasal corneal limbus of the left eye. Pathological examination and immunohistochemistry were diagnostic of AFX. CONCLUSIONS: AFX of the conjunctiva is rare, with this being only the fifth example of this neoplasm reported at this site. Complete surgical excision is the most appropriate treatment option.