14 resultados para Continuous-time Markov Process
em Duke University
Resumo:
While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.
In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.
By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.
Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.
Resumo:
This paper analyzes a class of common-component allocation rules, termed no-holdback (NHB) rules, in continuous-review assemble-to-order (ATO) systems with positive lead times. The inventory of each component is replenished following an independent base-stock policy. In contrast to the usually assumed first-come-first-served (FCFS) component allocation rule in the literature, an NHB rule allocates a component to a product demand only if it will yield immediate fulfillment of that demand. We identify metrics as well as cost and product structures under which NHB rules outperform all other component allocation rules. For systems with certain product structures, we obtain key performance expressions and compare them to those under FCFS. For general product structures, we present performance bounds and approximations. Finally, we discuss the applicability of these results to more general ATO systems. © 2010 INFORMS.
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
We consider a stochastic process driven by a linear ordinary differential equation whose right-hand side switches at exponential times between a collection of different matrices. We construct planar examples that switch between two matrices where the individual matrices and the average of the two matrices are all Hurwitz (all eigenvalues have strictly negative real part), but nonetheless the process goes to infinity at large time for certain values of the switching rate. We further construct examples in higher dimensions where again the two individual matrices and their averages are all Hurwitz, but the process has arbitrarily many transitions between going to zero and going to infinity at large time as the switching rate varies. In order to construct these examples, we first prove in general that if each of the individual matrices is Hurwitz, then the process goes to zero at large time for sufficiently slow switching rate and if the average matrix is Hurwitz, then the process goes to zero at large time for sufficiently fast switching rate. We also give simple conditions that ensure the process goes to zero at large time for all switching rates. © 2014 International Press.
Resumo:
The unprecedented and relentless growth in the electronics industry is feeding the demand for integrated circuits (ICs) with increasing functionality and performance at minimum cost and power consumption. As predicted by Moore's law, ICs are being aggressively scaled to meet this demand. While the continuous scaling of process technology is reducing gate delays, the performance of ICs is being increasingly dominated by interconnect delays. In an effort to improve submicrometer interconnect performance, to increase packing density, and to reduce chip area and power consumption, the semiconductor industry is focusing on three-dimensional (3D) integration. However, volume production and commercial exploitation of 3D integration are not feasible yet due to significant technical hurdles.
At the present time, interposer-based 2.5D integration is emerging as a precursor to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be adequately tested for product qualification. However, since the structure of 2.5D ICs is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond interposer testing, (2) lack of test access, (3) limited ability for at-speed testing, (4) high density I/O ports and interconnects, (5) reduced number of test pins, and (6) high power consumption. This research targets the above challenges and effective solutions have been developed to test both dies and the interposer.
The dissertation first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work on testing of 2.5D ICs is studied. An efficient method is presented to locate defects in a passive interposer before stacking. The proposed test architecture uses e-fuses that can be programmed to connect or disconnect functional paths inside the interposer. The concept of a die footprint is utilized for interconnect testing, and the overall assembly and test flow is described. Moreover, the concept of weighted critical area is defined and utilized to reduce test time. In order to fully determine the location of each e-fuse and the order of functional interconnects in a test path, we also present a test-path design algorithm. The proposed algorithm can generate all test paths for interconnect testing.
In order to test for opens, shorts, and interconnect delay defects in the interposer, a test architecture is proposed that is fully compatible with the IEEE 1149.1 standard and relies on an enhancement of the standard test access port (TAP) controller. To reduce test cost, a test-path design and scheduling technique is also presented that minimizes a composite cost function based on test time and the design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs) and micro-bumps needed for test access. The locations of the dies on the interposer are taken into consideration in order to determine the order of dies in a test path.
To address the scenario of high density of I/O ports and interconnects, an efficient built-in self-test (BIST) technique is presented that targets the dies and the interposer interconnects. The proposed BIST architecture can be enabled by the standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced by this BIST architecture is negligible; it includes two simple BIST controllers, a linear-feedback-shift-register (LFSR), a multiple-input-signature-register (MISR), and some extensions to the boundary-scan cells in the dies on the interposer. With these extensions, all boundary-scan cells can be used for self-configuration and self-diagnosis during interconnect testing. To reduce the overall test cost, a test scheduling and optimization technique under power constraints is described.
In order to accomplish testing with a small number test pins, the dissertation presents two efficient ExTest scheduling strategies that implements interconnect testing between tiles inside an system on chip (SoC) die on the interposer while satisfying the practical constraint that the number of required test pins cannot exceed the number of available pins at the chip level. The tiles in the SoC are divided into groups based on the manner in which they are interconnected. In order to minimize the test time, two optimization solutions are introduced. The first solution minimizes the number of input test pins, and the second solution minimizes the number output test pins. In addition, two subgroup configuration methods are further proposed to generate subgroups inside each test group.
Finally, the dissertation presents a programmable method for shift-clock stagger assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An SoC die in the 2.5D IC is typically composed of several blocks and two neighboring blocks that share the same power rails should not be toggled at the same time during shift. Therefore, the proposed programmable method does not assign the same stagger value to neighboring blocks. The positions of all blocks are first analyzed and the shared boundary length between blocks is then calculated. Based on the position relationships between the blocks, a mathematical model is presented to derive optimal result for small-to-medium sized problems. For larger designs, a heuristic algorithm is proposed and evaluated.
In summary, the dissertation targets important design and optimization problems related to testing of interposer-based 2.5D ICs. The proposed research has led to theoretical insights, experiment results, and a set of test and design-for-test methods to make testing effective and feasible from a cost perspective.
Resumo:
Recent research into resting-state functional magnetic resonance imaging (fMRI) has shown that the brain is very active during rest. This thesis work utilizes blood oxygenation level dependent (BOLD) signals to investigate the spatial and temporal functional network information found within resting-state data, and aims to investigate the feasibility of extracting functional connectivity networks using different methods as well as the dynamic variability within some of the methods. Furthermore, this work looks into producing valid networks using a sparsely-sampled sub-set of the original data.
In this work we utilize four main methods: independent component analysis (ICA), principal component analysis (PCA), correlation, and a point-processing technique. Each method comes with unique assumptions, as well as strengths and limitations into exploring how the resting state components interact in space and time.
Correlation is perhaps the simplest technique. Using this technique, resting-state patterns can be identified based on how similar the time profile is to a seed region’s time profile. However, this method requires a seed region and can only identify one resting state network at a time. This simple correlation technique is able to reproduce the resting state network using subject data from one subject’s scan session as well as with 16 subjects.
Independent component analysis, the second technique, has established software programs that can be used to implement this technique. ICA can extract multiple components from a data set in a single analysis. The disadvantage is that the resting state networks it produces are all independent of each other, making the assumption that the spatial pattern of functional connectivity is the same across all the time points. ICA is successfully able to reproduce resting state connectivity patterns for both one subject and a 16 subject concatenated data set.
Using principal component analysis, the dimensionality of the data is compressed to find the directions in which the variance of the data is most significant. This method utilizes the same basic matrix math as ICA with a few important differences that will be outlined later in this text. Using this method, sometimes different functional connectivity patterns are identifiable but with a large amount of noise and variability.
To begin to investigate the dynamics of the functional connectivity, the correlation technique is used to compare the first and second halves of a scan session. Minor differences are discernable between the correlation results of the scan session halves. Further, a sliding window technique is implemented to study the correlation coefficients through different sizes of correlation windows throughout time. From this technique it is apparent that the correlation level with the seed region is not static throughout the scan length.
The last method introduced, a point processing method, is one of the more novel techniques because it does not require analysis of the continuous time points. Here, network information is extracted based on brief occurrences of high or low amplitude signals within a seed region. Because point processing utilizes less time points from the data, the statistical power of the results is lower. There are also larger variations in DMN patterns between subjects. In addition to boosted computational efficiency, the benefit of using a point-process method is that the patterns produced for different seed regions do not have to be independent of one another.
This work compares four unique methods of identifying functional connectivity patterns. ICA is a technique that is currently used by many scientists studying functional connectivity patterns. The PCA technique is not optimal for the level of noise and the distribution of the data sets. The correlation technique is simple and obtains good results, however a seed region is needed and the method assumes that the DMN regions is correlated throughout the entire scan. Looking at the more dynamic aspects of correlation changing patterns of correlation were evident. The last point-processing method produces a promising results of identifying functional connectivity networks using only low and high amplitude BOLD signals.
Resumo:
We develop general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit recent nonparametric asymptotic distributional results, are both easy-to-implement and highly accurate in empirically realistic situations. We also illustrate that properly accounting for the measurement errors in the volatility forecast evaluations reported in the existing literature can result in markedly higher estimates for the true degree of return volatility predictability.
Resumo:
Assuming that daily spot exchange rates follow a martingale process, we derive the implied time series process for the vector of 30-day forward rate forecast errors from using weekly data. The conditional second moment matrix of this vector is modelled as a multivariate generalized ARCH process. The estimated model is used to test the hypothesis that the risk premium is a linear function of the conditional variances and covariances as suggested by the standard asset pricing theory literature. Little supportt is found for this theory; instead lagged changes in the forward rate appear to be correlated with the 'risk premium.'. © 1990.
Resumo:
© 2015 Society for Industrial and Applied Mathematics.We consider parabolic PDEs with randomly switching boundary conditions. In order to analyze these random PDEs, we consider more general stochastic hybrid systems and prove convergence to, and properties of, a stationary distribution. Applying these general results to the heat equation with randomly switching boundary conditions, we find explicit formulae for various statistics of the solution and obtain almost sure results about its regularity and structure. These results are of particular interest for biological applications as well as for their significant departure from behavior seen in PDEs forced by disparate Gaussian noise. Our general results also have applications to other types of stochastic hybrid systems, such as ODEs with randomly switching right-hand sides.
Resumo:
BACKGROUND: Singapore's population, as that of many other countries, is aging; this is likely to lead to an increase in eye diseases and the demand for eye care. Since ophthalmologist training is long and expensive, early planning is essential. This paper forecasts workforce and training requirements for Singapore up to the year 2040 under several plausible future scenarios. METHODS: The Singapore Eye Care Workforce Model was created as a continuous time compartment model with explicit workforce stocks using system dynamics. The model has three modules: prevalence of eye disease, demand, and workforce requirements. The model is used to simulate the prevalence of eye diseases, patient visits, and workforce requirements for the public sector under different scenarios in order to determine training requirements. RESULTS: Four scenarios were constructed. Under the baseline business-as-usual scenario, the required number of ophthalmologists is projected to increase by 117% from 2015 to 2040. Under the current policy scenario (assuming an increase of service uptake due to increased awareness, availability, and accessibility of eye care services), the increase will be 175%, while under the new model of care scenario (considering the additional effect of providing some services by non-ophthalmologists) the increase will only be 150%. The moderated workload scenario (assuming in addition a reduction of the clinical workload) projects an increase in the required number of ophthalmologists of 192% by 2040. Considering the uncertainties in the projected demand for eye care services, under the business-as-usual scenario, a residency intake of 8-22 residents per year is required, 17-21 under the current policy scenario, 14-18 under the new model of care scenario, and, under the moderated workload scenario, an intake of 18-23 residents per year is required. CONCLUSIONS: The results show that under all scenarios considered, Singapore's aging and growing population will result in an almost doubling of the number of Singaporeans with eye conditions, a significant increase in public sector eye care demand and, consequently, a greater requirement for ophthalmologists.
Resumo:
Urban problems have several features that make them inherently dynamic. Large transaction costs all but guarantee that homeowners will do their best to consider how a neighborhood might change before buying a house. Similarly, stores face large sunk costs when opening, and want to be sure that their investment will pay off in the long run. In line with those concerns, different areas of Economics have made recent advances in modeling those questions within a dynamic framework. This dissertation contributes to those efforts.
Chapter 2 discusses how to model an agent’s location decision when the agent must learn about an exogenous amenity that may be changing over time. The model is applied to estimating the marginal willingness to pay to avoid crime, in which agents are learning about the crime rate in a neighborhood, and the crime rate can change in predictable (Markovian) ways.
Chapters 3 and 4 concentrate on location decision problems when there are externalities between decision makers. Chapter 3 focuses on the decision of business owners to open a store, when its demand is a function of other nearby stores, either through competition, or through spillovers on foot traffic. It uses a dynamic model in continuous time to model agents’ decisions. A particular challenge is isolating the contribution of spillovers from the contribution of other unobserved neighborhood attributes that could also lead to agglomeration. A key contribution of this chapter is showing how we can use information on storefront ownership to help separately identify spillovers.
Finally, chapter 4 focuses on a class of models in which families prefer to live
close to similar neighbors. This chapter provides the first simulation of such a model in which agents are forward looking, and shows that this leads to more segregation than it would have been observed with myopic agents, which is the standard in this literature. The chapter also discusses several extensions of the model that can be used to investigate relevant questions such as the arrival of a large contingent high skilled tech workers in San Francisco, the immigration of hispanic families to several southern American cities, large changes in local amenities, such as the construction of magnet schools or metro stations, and the flight of wealthy residents from cities in the Rust belt, such as Detroit.
Resumo:
This dissertation consists of three separate essays on job search and labor market dynamics. In the first essay, “The Impact of Labor Market Conditions on Job Creation: Evidence from Firm Level Data”, I study how much changes in labor market conditions reduce employment fluctuations over the business cycle. Changes in labor market conditions make hiring more expensive during expansions and cheaper during recessions, creating counter-cyclical incentives for job creation. I estimate firm level elasticities of labor demand with respect to changes in labor market conditions, considering two margins: changes in labor market tightness and changes in wages. Using employer-employee matched data from Brazil, I find that all firms are more sensitive to changes in wages rather than labor market tightness, and there is substantial heterogeneity in labor demand elasticity across regions. Based on these results, I demonstrate that changes in labor market conditions reduce the variance of employment growth over the business cycle by 20% in a median region, and this effect is equally driven by changes along each margin. Moreover, I show that the magnitude of the effect of labor market conditions on employment growth can be significantly affected by economic policy. In particular, I document that the rapid growth of the national minimum wages in Brazil in 1997-2010 amplified the impact of the change in labor market conditions during local expansions and diminished this impact during local recessions.
In the second essay, “A Framework for Estimating Persistence of Local Labor
Demand Shocks”, I propose a decomposition which allows me to study the persistence of local labor demand shocks. Persistence of labor demand shocks varies across industries, and the incidence of shocks in a region depends on the regional industrial composition. As a result, less diverse regions are more likely to experience deeper shocks, but not necessarily more long lasting shocks. Building on this idea, I propose a decomposition of local labor demand shocks into idiosyncratic location shocks and nationwide industry shocks and estimate the variance and the persistence of these shocks using the Quarterly Census of Employment and Wages (QCEW) in 1990-2013.
In the third essay, “Conditional Choice Probability Estimation of Continuous- Time Job Search Models”, co-authored with Peter Arcidiacono and Arnaud Maurel, we propose a novel, computationally feasible method of estimating non-stationary job search models. Non-stationary job search models arise in many applications, where policy change can be anticipated by the workers. The most prominent example of such policy is the expiration of unemployment benefits. However, estimating these models still poses a considerable computational challenge, because of the need to solve a differential equation numerically at each step of the optimization routine. We overcome this challenge by adopting conditional choice probability methods, widely used in dynamic discrete choice literature, to job search models and show how the hazard rate out of unemployment and the distribution of the accepted wages, which can be estimated in many datasets, can be used to infer the value of unemployment. We demonstrate how to apply our method by analyzing the effect of the unemployment benefit expiration on duration of unemployment using the data from the Survey of Income and Program Participation (SIPP) in 1996-2007.
Resumo:
Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.