3 resultados para Continuing education programs

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

*Designated as an exemplary master's project for 2015-16*

The American approach to disparities in educational achievement is deficit focused and based on false assumptions of equal educational opportunity and social mobility. The labels attached to children served by compensatory early childhood education programs have evolved, e.g., from “culturally deprived” into “at-risk” for school failure, yet remain rooted in deficit discourses and ideology. Drawing on multiple bodies of literature, this thesis analyzes the rhetoric of compensatory education as viewed through the conceptual lens of the deficit thinking paradigm, in which school failure is attributed to perceived genetic, cultural, or environmental deficiencies, rather than institutional and societal inequalities. With a focus on the evolution of deficit thinking, the thesis begins with late 19th century U.S. early childhood education as it set the stage for more than a century of compensatory education responses to the needs of children, inadequacies of immigrant and minority families, and threats to national security. Key educational research and publications on genetic-, cultural-, and environmental-deficits are aligned with trends in achievement gaps and compensatory education initiatives, beginning mid-20th century following the Brown vs Board declaration of 1954 and continuing to the present. This analysis then highlights patterns in the oppression, segregation, and disenfranchisement experienced by low-income and minority students, largely ignored within the mainstream compensatory education discourse. This thesis concludes with a heterodox analysis of how the deficit thinking paradigm is dependent on assumptions of equal educational opportunity and social mobility, which helps perpetuate the cycle of school failure amid larger social injustices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: In the domain of academia, the scholarship of research may include, but not limited to, peer-reviewed publications, presentations, or grant submissions. Programmatic research productivity is one of many measures of academic program reputation and ranking. Another measure or tool for quantifying learning success among physical therapists education programs in the USA is 100 % three year pass rates of graduates on the standardized National Physical Therapy Examination (NPTE). In this study, we endeavored to determine if there was an association between research productivity through artifacts and 100 % three year pass rates on the NPTE. METHODS: This observational study involved using pre-approved database exploration representing all accredited programs in the USA who graduated physical therapists during 2009, 2010 and 2011. Descriptive variables captured included raw research productivity artifacts such as peer reviewed publications and books, number of professional presentations, number of scholarly submissions, total grant dollars, and numbers of grants submitted. Descriptive statistics and comparisons (using chi square and t-tests) among program characteristics and research artifacts were calculated. Univariate logistic regression analyses, with appropriate control variables were used to determine associations between research artifacts and 100 % pass rates. RESULTS: Number of scholarly artifacts submitted, faculty with grants, and grant proposals submitted were significantly higher in programs with 100 % three year pass rates. However, after controlling for program characteristics such as grade point average, diversity percentage of cohort, public/private institution, and number of faculty, there were no significant associations between scholarly artifacts and 100 % three year pass rates. CONCLUSIONS: Factors outside of research artifacts are likely better predictors for passing the NPTE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Empirical studies of education programs and systems, by nature, rely upon use of student outcomes that are measurable. Often, these come in the form of test scores. However, in light of growing evidence about the long-run importance of other student skills and behaviors, the time has come for a broader approach to evaluating education. This dissertation undertakes experimental, quasi-experimental, and descriptive analyses to examine social, behavioral, and health-related mechanisms of the educational process. My overarching research question is simply, which inside- and outside-the-classroom features of schools and educational interventions are most beneficial to students in the long term? Furthermore, how can we apply this evidence toward informing policy that could effectively reduce stark social, educational, and economic inequalities?

The first study of three assesses mechanisms by which the Fast Track project, a randomized intervention in the early 1990s for high-risk children in four communities (Durham, NC; Nashville, TN; rural PA; and Seattle, WA), reduced delinquency, arrests, and health and mental health service utilization in adolescence through young adulthood (ages 12-20). A decomposition of treatment effects indicates that about a third of Fast Track’s impact on later crime outcomes can be accounted for by improvements in social and self-regulation skills during childhood (ages 6-11), such as prosocial behavior, emotion regulation and problem solving. These skills proved less valuable for the prevention of mental and physical health problems.

The second study contributes new evidence on how non-instructional investments – such as increased spending on school social workers, guidance counselors, and health services – affect multiple aspects of student performance and well-being. Merging several administrative data sources spanning the 1996-2013 school years in North Carolina, I use an instrumental variables approach to estimate the extent to which local expenditure shifts affect students’ academic and behavioral outcomes. My findings indicate that exogenous increases in spending on non-instructional services not only reduce student absenteeism and disciplinary problems (important predictors of long-term outcomes) but also significantly raise student achievement, in similar magnitude to corresponding increases in instructional spending. Furthermore, subgroup analyses suggest that investments in student support personnel such as social workers, health services, and guidance counselors, in schools with concentrated low-income student populations could go a long way toward closing socioeconomic achievement gaps.

The third study examines individual pathways that lead to high school graduation or dropout. It employs a variety of machine learning techniques, including decision trees, random forests with bagging and boosting, and support vector machines, to predict student dropout using longitudinal administrative data from North Carolina. I consider a large set of predictor measures from grades three through eight including academic achievement, behavioral indicators, and background characteristics. My findings indicate that the most important predictors include eighth grade absences, math scores, and age-for-grade as well as early reading scores. Support vector classification (with a high cost parameter and low gamma parameter) predicts high school dropout with the highest overall validity in the testing dataset at 90.1 percent followed by decision trees with boosting and interaction terms at 89.5 percent.