5 resultados para Content-Base Image Retrieval
em Duke University
Not published, not indexed: issues in generating and finding hospice and palliative care literature.
Resumo:
INTRODUCTION: Accessing new knowledge as the evidence base for hospice and palliative care grows has specific challenges for the discipline. This study aimed to describe conversion rates of palliative and hospice care conference abstracts to journal articles and to highlight that some palliative care literature may not be retrievable because it is not indexed on bibliographic databases. METHODS: Substudy A tracked the journal publication of conference abstracts selected for inclusion in a gray literature database on www.caresearch.com.au . Abstracts were included in the gray literature database following handsearching of proceedings of over 100 Australian conferences likely to have some hospice or palliative care content that were held between 1980 and 1999. Substudy B looked at indexing from first publication until 2001 of three international hospice and palliative care journals in four widely available bibliographic databases through systematic tracing of all original papers in the journals. RESULTS: Substudy A showed that for the 1338 abstracts identified only 15.9% were published (compared to an average in health of 45%). Published abstracts were found in 78 different journals. Multiauthor abstracts and oral presentations had higher rates of conversion. Substudy B demonstrated lag time between first publication and bibliographic indexing. Even after listing, idiosyncratic noninclusions were identified. DISCUSSION: There are limitations to retrieval of all possible literature through electronic searching of bibliographic databases. Encouraging publication in indexed journals of studies presented at conferences, promoting selection of palliative care journals for database indexing, and searching more than one bibliographic database will improve the accessibility of existing and new knowledge in hospice and palliative care.
Resumo:
BACKGROUND: While effective population size (Ne) and life history traits such as generation time are known to impact substitution rates, their potential effects on base composition evolution are less well understood. GC content increases with decreasing body mass in mammals, consistent with recombination-associated GC biased gene conversion (gBGC) more strongly impacting these lineages. However, shifts in chromosomal architecture and recombination landscapes between species may complicate the interpretation of these results. In birds, interchromosomal rearrangements are rare and the recombination landscape is conserved, suggesting that this group is well suited to assess the impact of life history on base composition. RESULTS: Employing data from 45 newly and 3 previously sequenced avian genomes covering a broad range of taxa, we found that lineages with large populations and short generations exhibit higher GC content. The effect extends to both coding and non-coding sites, indicating that it is not due to selection on codon usage. Consistent with recombination driving base composition, GC content and heterogeneity were positively correlated with the rate of recombination. Moreover, we observed ongoing increases in GC in the majority of lineages. CONCLUSIONS: Our results provide evidence that gBGC may drive patterns of nucleotide composition in avian genomes and are consistent with more effective gBGC in large populations and a greater number of meioses per unit time; that is, a shorter generation time. Thus, in accord with theoretical predictions, base composition evolution is substantially modulated by species life history.
Resumo:
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.
Resumo:
Functional MRI was used to investigate the role of medial temporal lobe and inferior frontal lobe regions in autobiographical recall. Prior to scanning, participants generated cue words for 50 autobiographical memories and rated their phenomenological properties using our autobiographical memory questionnaire (AMQ). During scanning, the cue words were presented and participants pressed a button when they retrieved the associated memory. The autobiographical retrieval task was interleaved in an event-related design with a semantic retrieval task (category generation). Region-of-interest analyses showed greater activation of the amygdala, hippocampus, and right inferior frontal gyrus during autobiographical retrieval relative to semantic retrieval. In addition, the left inferior frontal gyrus showed a more prolonged duration of activation in the semantic retrieval condition. A targeted correlational analysis revealed pronounced functional connectivity among the amygdala, hippocampus, and right inferior frontal gyrus during autobiographical retrieval but not during semantic retrieval. These results support theories of autobiographical memory that hypothesize co-activation of frontotemporal areas during recollection of episodes from the personal past.
Resumo:
Functional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.