2 resultados para Conditional Least Squares Estimator,
em Duke University
Resumo:
My dissertation has three chapters which develop and apply microeconometric tech- niques to empirically relevant problems. All the chapters examines the robustness issues (e.g., measurement error and model misspecification) in the econometric anal- ysis. The first chapter studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treat- ment variable is mismeasured and endogenous. I characterize the sharp identified set for the local average treatment effect under the following two assumptions: (1) the exclusion restriction of an instrument and (2) deterministic monotonicity of the true treatment variable in the instrument. The identification strategy allows for general measurement error. Notably, (i) the measurement error is nonclassical, (ii) it can be endogenous, and (iii) no assumptions are imposed on the marginal distribution of the measurement error, so that I do not need to assume the accuracy of the measure- ment. Based on the partial identification result, I provide a consistent confidence interval for the local average treatment effect with uniformly valid size control. I also show that the identification strategy can incorporate repeated measurements to narrow the identified set, even if the repeated measurements themselves are endoge- nous. Using the the National Longitudinal Study of the High School Class of 1972, I demonstrate that my new methodology can produce nontrivial bounds for the return to college attendance when attendance is mismeasured and endogenous.
The second chapter, which is a part of a coauthored project with Federico Bugni, considers the problem of inference in dynamic discrete choice problems when the structural model is locally misspecified. We consider two popular classes of estimators for dynamic discrete choice models: K-step maximum likelihood estimators (K-ML) and K-step minimum distance estimators (K-MD), where K denotes the number of policy iterations employed in the estimation problem. These estimator classes include popular estimators such as Rust (1987)’s nested fixed point estimator, Hotz and Miller (1993)’s conditional choice probability estimator, Aguirregabiria and Mira (2002)’s nested algorithm estimator, and Pesendorfer and Schmidt-Dengler (2008)’s least squares estimator. We derive and compare the asymptotic distributions of K- ML and K-MD estimators when the model is arbitrarily locally misspecified and we obtain three main results. In the absence of misspecification, Aguirregabiria and Mira (2002) show that all K-ML estimators are asymptotically equivalent regardless of the choice of K. Our first result shows that this finding extends to a locally misspecified model, regardless of the degree of local misspecification. As a second result, we show that an analogous result holds for all K-MD estimators, i.e., all K- MD estimator are asymptotically equivalent regardless of the choice of K. Our third and final result is to compare K-MD and K-ML estimators in terms of asymptotic mean squared error. Under local misspecification, the optimally weighted K-MD estimator depends on the unknown asymptotic bias and is no longer feasible. In turn, feasible K-MD estimators could have an asymptotic mean squared error that is higher or lower than that of the K-ML estimators. To demonstrate the relevance of our asymptotic analysis, we illustrate our findings using in a simulation exercise based on a misspecified version of Rust (1987) bus engine problem.
The last chapter investigates the causal effect of the Omnibus Budget Reconcil- iation Act of 1993, which caused the biggest change to the EITC in its history, on unemployment and labor force participation among single mothers. Unemployment and labor force participation are difficult to define for a few reasons, for example, be- cause of marginally attached workers. Instead of searching for the unique definition for each of these two concepts, this chapter bounds unemployment and labor force participation by observable variables and, as a result, considers various competing definitions of these two concepts simultaneously. This bounding strategy leads to partial identification of the treatment effect. The inference results depend on the construction of the bounds, but they imply positive effect on labor force participa- tion and negligible effect on unemployment. The results imply that the difference- in-difference result based on the BLS definition of unemployment can be misleading
due to misclassification of unemployment.
Resumo:
Protecting public health is the most legitimate use of zoning, and yet there is minimal progress in applying it to the obesity problem. Zoning could potentially be used to address both unhealthy and healthy food retailers, but lack of evidence regarding the impact of zoning and public opinion on zoning changes are barriers to implementing zoning restrictions on fast food on a larger scale. My dissertation addresses these gaps in our understanding of health zoning as a policy option for altering built, food environments.
Chapter 1 examines the relationship between food swamps and obesity and whether spatial mapping might be useful in identifying priority geographic areas for zoning interventions. I employ an instrumental variables (IV) strategy to correct for the endogeneity problems associated with food environments, namely that individuals may self-select into certain neighborhoods and may consider food availability in their decision process. I utilize highway exits as a source of exogenous variation .Using secondary data from the USDA Food Environment Atlas, ordinary least squares (OLS) and IV regression models were employed to analyze cross-sectional associations between local food environments and the prevalence of obesity. I find even after controlling for food desert effects, food swamps have a positive, statistically significant effect on adult obesity rates.
Chapter 2 applies theories of message framing and prospect theory to the emerging discussion around health zoning policies targeting food environments and to explore public opinion toward a list of potential zoning restrictions on fast-food restaurants (beyond moratoriums on new establishments). In order to explore causality, I employ an online survey experiment manipulating exposure to vignettes with different message frames about health zoning restrictions with two national samples of adult Americans age 18 and over (N1=2,768 and N2=3,236). The second sample oversamples Black Americans (N=1,000) and individuals with high school as their highest level of education. Respondents were randomly assigned to one of six conditions where they were primed with different message frames about the benefits of zoning restrictions on fast food retailers. Participants were then asked to indicate their support for six zoning policies on a Likert scale. Subjects also answered questions about their food store access, eating behaviors, health status and perceptions of food stores by type.
I find that a message frame about Nutrition and increasing Equity in the food system was particularly effective at increasing support for health zoning policies targeting fast food outlets across policy categories (Conditional, Youth-related, Performance and Incentive) and across racial groups. This finding is consistent with an influential environmental justice scholar’s description of “injustice frames” as effective in mobilizing supporters around environmental issues (Taylor 2000). I extend this rationale to food environment obesity prevention efforts and identify Nutrition combined with Equity frames as an arguably universal campaign strategy for bolstering public support of zoning restrictions on fast food retailers.
Bridging my findings from both Chapters 1 and 2, using food swamps as a spatial metaphor may work to identify priority areas for policy intervention, but only if there is an equitable distribution of resources and mobilization efforts to improve consumer food environments. If the structural forces which ration access to land-use planning persist (arguably including the media as gatekeepers to information and producers of message frames) disparities in obesity are likely to widen.