1 resultado para Computer arithmetic and logic units.
em Duke University
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (5)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (33)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (27)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (26)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CentAUR: Central Archive University of Reading - UK (50)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (12)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (13)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (7)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (18)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (24)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (10)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (20)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (4)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (45)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (9)
- Scielo Uruguai (2)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (33)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (9)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (25)
- Université de Montréal, Canada (7)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (79)
- University of Queensland eSpace - Australia (253)
- University of Southampton, United Kingdom (4)
- University of Washington (7)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
Uncertainty quantification (UQ) is both an old and new concept. The current novelty lies in the interactions and synthesis of mathematical models, computer experiments, statistics, field/real experiments, and probability theory, with a particular emphasize on the large-scale simulations by computer models. The challenges not only come from the complication of scientific questions, but also from the size of the information. It is the focus in this thesis to provide statistical models that are scalable to massive data produced in computer experiments and real experiments, through fast and robust statistical inference.
Chapter 2 provides a practical approach for simultaneously emulating/approximating massive number of functions, with the application on hazard quantification of Soufri\`{e}re Hills volcano in Montserrate island. Chapter 3 discusses another problem with massive data, in which the number of observations of a function is large. An exact algorithm that is linear in time is developed for the problem of interpolation of Methylation levels. Chapter 4 and Chapter 5 are both about the robust inference of the models. Chapter 4 provides a new criteria robustness parameter estimation criteria and several ways of inference have been shown to satisfy such criteria. Chapter 5 develops a new prior that satisfies some more criteria and is thus proposed to use in practice.