4 resultados para Computational periodic model

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pigeons and other animals soon learn to wait (pause) after food delivery on periodic-food schedules before resuming the food-rewarded response. Under most conditions the steady-state duration of the average waiting time, t, is a linear function of the typical interfood interval. We describe three experiments designed to explore the limits of this process. In all experiments, t was associated with one key color and the subsequent food delay, T, with another. In the first experiment, we compared the relation between t (waiting time) and T (food delay) under two conditions: when T was held constant, and when T was an inverse function of t. The pigeons could maximize the rate of food delivery under the first condition by setting t to a consistently short value; optimal behavior under the second condition required a linear relation with unit slope between t and T. Despite this difference in optimal policy, the pigeons in both cases showed the same linear relation, with slope less than one, between t and T. This result was confirmed in a second parametric experiment that added a third condition, in which T + t was held constant. Linear waiting appears to be an obligatory rule for pigeons. In a third experiment we arranged for a multiplicative relation between t and T (positive feedback), and produced either very short or very long waiting times as predicted by a quasi-dynamic model in which waiting time is strongly determined by the just-preceding food delay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our media is saturated with claims of ``facts'' made from data. Database research has in the past focused on how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting claims, e.g., is a claim ``cherry-picking''? This paper proposes a Query Response Surface (QRS) based framework that models claims based on structured data as parameterized queries. A key insight is that we can learn a lot about a claim by perturbing its parameters and seeing how its conclusion changes. This framework lets us formulate and tackle practical fact-checking tasks --- reverse-engineering vague claims, and countering questionable claims --- as computational problems. Within the QRS based framework, we take one step further, and propose a problem along with efficient algorithms for finding high-quality claims of a given form from data, i.e. raising good questions, in the first place. This is achieved to using a limited number of high-valued claims to represent high-valued regions of the QRS. Besides the general purpose high-quality claim finding problem, lead-finding can be tailored towards specific claim quality measures, also defined within the QRS framework. An example of uniqueness-based lead-finding is presented for ``one-of-the-few'' claims, landing in interpretable high-quality claims, and an adjustable mechanism for ranking objects, e.g. NBA players, based on what claims can be made for them. Finally, we study the use of visualization as a powerful way of conveying results of a large number of claims. An efficient two stage sampling algorithm is proposed for generating input of 2d scatter plot with heatmap, evalutaing a limited amount of data, while preserving the two essential visual features, namely outliers and clusters. For all the problems, we present real-world examples and experiments that demonstrate the power of our model, efficiency of our algorithms, and usefulness of their results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional regulation has been studied intensively in recent decades. One important aspect of this regulation is the interaction between regulatory proteins, such as transcription factors (TF) and nucleosomes, and the genome. Different high-throughput techniques have been invented to map these interactions genome-wide, including ChIP-based methods (ChIP-chip, ChIP-seq, etc.), nuclease digestion methods (DNase-seq, MNase-seq, etc.), and others. However, a single experimental technique often only provides partial and noisy information about the whole picture of protein-DNA interactions. Therefore, the overarching goal of this dissertation is to provide computational developments for jointly modeling different experimental datasets to achieve a holistic inference on the protein-DNA interaction landscape.

We first present a computational framework that can incorporate the protein binding information in MNase-seq data into a thermodynamic model of protein-DNA interaction. We use a correlation-based objective function to model the MNase-seq data and a Markov chain Monte Carlo method to maximize the function. Our results show that the inferred protein-DNA interaction landscape is concordant with the MNase-seq data and provides a mechanistic explanation for the experimentally collected MNase-seq fragments. Our framework is flexible and can easily incorporate other data sources. To demonstrate this flexibility, we use prior distributions to integrate experimentally measured protein concentrations.

We also study the ability of DNase-seq data to position nucleosomes. Traditionally, DNase-seq has only been widely used to identify DNase hypersensitive sites, which tend to be open chromatin regulatory regions devoid of nucleosomes. We reveal for the first time that DNase-seq datasets also contain substantial information about nucleosome translational positioning, and that existing DNase-seq data can be used to infer nucleosome positions with high accuracy. We develop a Bayes-factor-based nucleosome scoring method to position nucleosomes using DNase-seq data. Our approach utilizes several effective strategies to extract nucleosome positioning signals from the noisy DNase-seq data, including jointly modeling data points across the nucleosome body and explicitly modeling the quadratic and oscillatory DNase I digestion pattern on nucleosomes. We show that our DNase-seq-based nucleosome map is highly consistent with previous high-resolution maps. We also show that the oscillatory DNase I digestion pattern is useful in revealing the nucleosome rotational context around TF binding sites.

Finally, we present a state-space model (SSM) for jointly modeling different kinds of genomic data to provide an accurate view of the protein-DNA interaction landscape. We also provide an efficient expectation-maximization algorithm to learn model parameters from data. We first show in simulation studies that the SSM can effectively recover underlying true protein binding configurations. We then apply the SSM to model real genomic data (both DNase-seq and MNase-seq data). Through incrementally increasing the types of genomic data in the SSM, we show that different data types can contribute complementary information for the inference of protein binding landscape and that the most accurate inference comes from modeling all available datasets.

This dissertation provides a foundation for future research by taking a step toward the genome-wide inference of protein-DNA interaction landscape through data integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limit-periodic (LP) structures exhibit a type of nonperiodic order yet to be found in a natural material. A recent result in tiling theory, however, has shown that LP order can spontaneously emerge in a two-dimensional (2D) lattice model with nearest-and next-nearest-neighbor interactions. In this dissertation, we explore the question of what types of interactions can lead to a LP state and address the issue of whether the formation of a LP structure in experiments is possible. We study emergence of LP order in three-dimensional (3D) tiling models and bring the subject into the physical realm by investigating systems with realistic Hamiltonians and low energy LP states. Finally, we present studies of the vibrational modes of a simple LP ball and spring model whose results indicate that LP materials would exhibit novel physical properties.

A 2D lattice model defined on a triangular lattice with nearest- and next-nearest-neighbor interactions based on the Taylor-Socolar (TS) monotile is known to have a LP ground state. The system reaches that state during a slow quench through an infinite sequence of phase transitions. Surprisingly, even when the strength of the next-nearest-neighbor interactions is zero, in which case there is a large degenerate class of both crystalline and LP ground states, a slow quench yields the LP state. The first study in this dissertation introduces 3D models closely related to the 2D models that exhibit LP phases. The particular 3D models were designed such that next-nearest-neighbor interactions of the TS type are implemented using only nearest-neighbor interactions. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures that can be more complex than in the 2D case.

In the second study, we investigate systems with physical Hamiltonians based on one of the 2D tiling models with the goal of stimulating attempts to create a LP structure in experiments. We explore physically realizable particle designs while being mindful of particular features that may make the assembly of a LP structure in an experimental system difficult. Through Monte Carlo (MC) simulations, we have found that one particle design in particular is a promising template for a physical particle; a 2D system of identical disks with embedded dipoles is observed to undergo the series of phase transitions which leads to the LP state.

LP structures are well ordered but nonperiodic, and hence have nontrivial vibrational modes. In the third section of this dissertation, we study a ball and spring model with a LP pattern of spring stiffnesses and identify a set of extended modes with arbitrarily low participation ratios, a situation that appears to be unique to LP systems. The balls that oscillate with large amplitude in these modes live on periodic nets with arbitrarily large lattice constants. By studying periodic approximants to the LP structure, we present numerical evidence for the existence of such modes, and we give a heuristic explanation of their structure.