5 resultados para Community survey

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The third wave of the National Congregations Study (NCS-III) was conducted in 2012. The 2012 General Social Survey asked respondents who attend religious services to name their religious congregation, producing a nationally representative cross-section of congregations from across the religious spectrum. Data about these congregations was collected via a 50-minute interview with one key informant from 1,331 congregations. Information was gathered about multiple aspects of congregations’ social composition, structure, activities, and programming. Approximately two-thirds of the NCS-III questionnaire replicates items from 1998 or 2006-07 NCS waves. Each congregation was geocoded, and selected data from the 2010 United States census or American Community Survey have been appended. We describe NCS-III methodology and use the cumulative NCS dataset (containing 4,071 cases) to describe five trends: more ethnic diversity, greater acceptance of gays and lesbians, increasingly informal worship styles, declining size (but not from the perspective of the average attendee), and declining denominational affiliation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surveys can collect important data that inform policy decisions and drive social science research. Large government surveys collect information from the U.S. population on a wide range of topics, including demographics, education, employment, and lifestyle. Analysis of survey data presents unique challenges. In particular, one needs to account for missing data, for complex sampling designs, and for measurement error. Conceptually, a survey organization could spend lots of resources getting high-quality responses from a simple random sample, resulting in survey data that are easy to analyze. However, this scenario often is not realistic. To address these practical issues, survey organizations can leverage the information available from other sources of data. For example, in longitudinal studies that suffer from attrition, they can use the information from refreshment samples to correct for potential attrition bias. They can use information from known marginal distributions or survey design to improve inferences. They can use information from gold standard sources to correct for measurement error.

This thesis presents novel approaches to combining information from multiple sources that address the three problems described above.

The first method addresses nonignorable unit nonresponse and attrition in a panel survey with a refreshment sample. Panel surveys typically suffer from attrition, which can lead to biased inference when basing analysis only on cases that complete all waves of the panel. Unfortunately, the panel data alone cannot inform the extent of the bias due to attrition, so analysts must make strong and untestable assumptions about the missing data mechanism. Many panel studies also include refreshment samples, which are data collected from a random sample of new

individuals during some later wave of the panel. Refreshment samples offer information that can be utilized to correct for biases induced by nonignorable attrition while reducing reliance on strong assumptions about the attrition process. To date, these bias correction methods have not dealt with two key practical issues in panel studies: unit nonresponse in the initial wave of the panel and in the

refreshment sample itself. As we illustrate, nonignorable unit nonresponse

can significantly compromise the analyst's ability to use the refreshment samples for attrition bias correction. Thus, it is crucial for analysts to assess how sensitive their inferences---corrected for panel attrition---are to different assumptions about the nature of the unit nonresponse. We present an approach that facilitates such sensitivity analyses, both for suspected nonignorable unit nonresponse

in the initial wave and in the refreshment sample. We illustrate the approach using simulation studies and an analysis of data from the 2007-2008 Associated Press/Yahoo News election panel study.

The second method incorporates informative prior beliefs about

marginal probabilities into Bayesian latent class models for categorical data.

The basic idea is to append synthetic observations to the original data such that

(i) the empirical distributions of the desired margins match those of the prior beliefs, and (ii) the values of the remaining variables are left missing. The degree of prior uncertainty is controlled by the number of augmented records. Posterior inferences can be obtained via typical MCMC algorithms for latent class models, tailored to deal efficiently with the missing values in the concatenated data.

We illustrate the approach using a variety of simulations based on data from the American Community Survey, including an example of how augmented records can be used to fit latent class models to data from stratified samples.

The third method leverages the information from a gold standard survey to model reporting error. Survey data are subject to reporting error when respondents misunderstand the question or accidentally select the wrong response. Sometimes survey respondents knowingly select the wrong response, for example, by reporting a higher level of education than they actually have attained. We present an approach that allows an analyst to model reporting error by incorporating information from a gold standard survey. The analyst can specify various reporting error models and assess how sensitive their conclusions are to different assumptions about the reporting error process. We illustrate the approach using simulations based on data from the 1993 National Survey of College Graduates. We use the method to impute error-corrected educational attainments in the 2010 American Community Survey using the 2010 National Survey of College Graduates as the gold standard survey.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract

Continuous variable is one of the major data types collected by the survey organizations. It can be incomplete such that the data collectors need to fill in the missingness. Or, it can contain sensitive information which needs protection from re-identification. One of the approaches to protect continuous microdata is to sum them up according to different cells of features. In this thesis, I represents novel methods of multiple imputation (MI) that can be applied to impute missing values and synthesize confidential values for continuous and magnitude data.

The first method is for limiting the disclosure risk of the continuous microdata whose marginal sums are fixed. The motivation for developing such a method comes from the magnitude tables of non-negative integer values in economic surveys. I present approaches based on a mixture of Poisson distributions to describe the multivariate distribution so that the marginals of the synthetic data are guaranteed to sum to the original totals. At the same time, I present methods for assessing disclosure risks in releasing such synthetic magnitude microdata. The illustration on a survey of manufacturing establishments shows that the disclosure risks are low while the information loss is acceptable.

The second method is for releasing synthetic continuous micro data by a nonstandard MI method. Traditionally, MI fits a model on the confidential values and then generates multiple synthetic datasets from this model. Its disclosure risk tends to be high, especially when the original data contain extreme values. I present a nonstandard MI approach conditioned on the protective intervals. Its basic idea is to estimate the model parameters from these intervals rather than the confidential values. The encouraging results of simple simulation studies suggest the potential of this new approach in limiting the posterior disclosure risk.

The third method is for imputing missing values in continuous and categorical variables. It is extended from a hierarchically coupled mixture model with local dependence. However, the new method separates the variables into non-focused (e.g., almost-fully-observed) and focused (e.g., missing-a-lot) ones. The sub-model structure of focused variables is more complex than that of non-focused ones. At the same time, their cluster indicators are linked together by tensor factorization and the focused continuous variables depend locally on non-focused values. The model properties suggest that moving the strongly associated non-focused variables to the side of focused ones can help to improve estimation accuracy, which is examined by several simulation studies. And this method is applied to data from the American Community Survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Neurodegenerative diseases (NDD) are characterized by progressive decline and loss of function, requiring considerable third-party care. NDD carers report low quality of life and high caregiver burden. Despite this, little information is available about the unmet needs of NDD caregivers. METHODS: Data from a cross-sectional, whole of population study conducted in South Australia were analyzed to determine the profile and unmet care needs of people who identify as having provided care for a person who died an expected death from NDDs including motor neurone disease and multiple sclerosis. Bivariate analyses using chi(2) were complemented with a regression analysis. RESULTS: Two hundred and thirty respondents had a person close to them die from an NDD in the 5 years before responding. NDD caregivers were more likely to have provided care for more than 2 years and were more able to move on after the death than caregivers of people with other disorders such as cancer. The NDD caregivers accessed palliative care services at the same rate as other caregivers at the end of life, however people with an NDD were almost twice as likely to die in the community (odds ratio [OR] 1.97; 95% confidence interval [CI] 1.30 to 3.01) controlling for relevant caregiver factors. NDD caregivers reported significantly more unmet needs in emotional, spiritual, and bereavement support. CONCLUSION: This study is the first step in better understanding across the whole population the consequences of an expected death from an NDD. Assessments need to occur while in the role of caregiver and in the subsequent bereavement phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Both compulsory detoxification treatment and community-based methadone maintenance treatment (MMT) exist for heroin addicts in China. We aim to examine the effectiveness of three intervention models for referring heroin addicts released from compulsory detoxification centers to community methadone maintenance treatment (MMT) clinics in Dehong prefecture, Yunnan province, China. METHODS: Using a quasi-experimental study design, three different referral models were assigned to four detoxification centers. Heroin addicts were enrolled based on their fulfillment to eligibility criteria and provision of informed consent. Two months prior to their release, information on demographic characteristics, history of heroin use, and prior participation in intervention programs was collected via a survey, and blood samples were obtained for HIV testing. All subjects were followed for six months after release from detoxification centers. Multi-level logistic regression analysis was used to examine factors predicting successful referrals to MMT clinics. RESULTS: Of the 226 participants who were released and followed, 9.7% were successfully referred to MMT(16.2% of HIV-positive participants and 7.0% of HIV-negative participants). A higher proportion of successful referrals was observed among participants who received both referral cards and MMT treatment while still in detoxification centers (25.8%) as compared to those who received both referral cards and police-assisted MMT enrollment (5.4%) and those who received referral cards only (0%). Furthermore, those who received referral cards and MMT treatment while still in detoxification had increased odds of successful referral to an MMT clinic (adjusted OR = 1.2, CI = 1.1-1.3). Having participated in an MMT program prior to detention (OR = 1.5, CI = 1.3-1.6) was the only baseline covariate associated with increased odds of successful referral. CONCLUSION: Findings suggest that providing MMT within detoxification centers promotes successful referral of heroin addicts to community-based MMT upon their release.