9 resultados para Collagen Type III

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. RESULTS: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. CONCLUSIONS: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FNDC5 (fibronectin domain-containing [protein] 5) was initially discovered and characterized by two groups in 2002. In 2011 FNDC5 burst into prominence as the parent of irisin, a small protein containing the fibronectin type III domain. Irisin was proposed to be secreted by skeletal muscle cells in response to exercise, and to circulate to fat tissue where it induced a transition to brown fat. Since brown fat results in dissipation of energy, this pathway is of considerable interest for metabolism and obesity. Here I review the original discoveries of FNDC5 and the more recent discovery of irisin. I note in particular three problems in the characterization of irisin: the antibodies used to detect irisin in plasma lack validity; the recombinant protein used to demonstrate activity in cell culture was severely truncated; and the degree of shedding of soluble irisin from the cell surface has not been quantitated. The original discovery proposing that FNDC5 may be a transmembrane receptor may deserve a new look.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The myokine irisin is supposed to be cleaved from a transmembrane precursor, FNDC5 (fibronectin type III domain containing 5), and to mediate beneficial effects of exercise on human metabolism. However, evidence for irisin circulating in blood is largely based on commercial ELISA kits which are based on polyclonal antibodies (pAbs) not previously tested for cross-reacting serum proteins. We have analyzed four commercial pAbs by Western blotting, which revealed prominent cross-reactivity with non-specific proteins in human and animal sera. Using recombinant glycosylated and non-glycosylated irisin as positive controls, we found no immune-reactive bands of the expected size in any biological samples. A FNDC5 signature was identified at ~20 kDa by mass spectrometry in human serum but was not detected by the commercial pAbs tested. Our results call into question all previous data obtained with commercial ELISA kits for irisin, and provide evidence against a physiological role for irisin in humans and other species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome (AS), thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane (GBM) findings. Secondary FSGS is known to develop in classic AS at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical finding at diagnosis was proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic-range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin GBM, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Risk assessment with a thorough family health history is recommended by numerous organizations and is now a required component of the annual physical for Medicare beneficiaries under the Affordable Care Act. However, there are several barriers to incorporating robust risk assessments into routine care. MeTree, a web-based patient-facing health risk assessment tool, was developed with the aim of overcoming these barriers. In order to better understand what factors will be instrumental for broader adoption of risk assessment programs like MeTree in clinical settings, we obtained funding to perform a type III hybrid implementation-effectiveness study in primary care clinics at five diverse healthcare systems. Here, we describe the study's protocol. METHODS/DESIGN: MeTree collects personal medical information and a three-generation family health history from patients on 98 conditions. Using algorithms built entirely from current clinical guidelines, it provides clinical decision support to providers and patients on 30 conditions. All adult patients with an upcoming well-visit appointment at one of the 20 intervention clinics are eligible to participate. Patient-oriented risk reports are provided in real time. Provider-oriented risk reports are uploaded to the electronic medical record for review at the time of the appointment. Implementation outcomes are enrollment rate of clinics, providers, and patients (enrolled vs approached) and their representativeness compared to the underlying population. Primary effectiveness outcomes are the percent of participants newly identified as being at increased risk for one of the clinical decision support conditions and the percent with appropriate risk-based screening. Secondary outcomes include percent change in those meeting goals for a healthy lifestyle (diet, exercise, and smoking). Outcomes are measured through electronic medical record data abstraction, patient surveys, and surveys/qualitative interviews of clinical staff. DISCUSSION: This study evaluates factors that are critical to successful implementation of a web-based risk assessment tool into routine clinical care in a variety of healthcare settings. The result will identify resource needs and potential barriers and solutions to implementation in each setting as well as an understanding potential effectiveness. TRIAL REGISTRATION: NCT01956773.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fibronectin (FN) is a large extracellular matrix (ECM) protein that is made up of

type I (FNI), type II (FNII), & type III (FNIII) domains. It assembles into an insoluble

supra-­‐‑molecular structure: the fibrillar FN matrix. FN fibrillogenesis is a cell‐‑mediated process, which is initiated when FN binds to integrins on the cell surface. The FN matrix plays an important role in cell migration, proliferation, signaling & adhesion. Despite decades of research, the FN matrix is one of the least understood supra-­‐‑molecular protein assemblies. There have been several attempts to elucidate the exact mechanism of matrix assembly resulting in significant progress in the field but it is still unclear as to what are FN-­‐‑FN interactions, the nature of these interactions and the domains of FN that

are in contact with each other. FN matrix fibrils are elastic in nature. Two models have been proposed to explain the elasticity of the fibrils. The first model: the ‘domain unfolding’ model postulates that the unraveling of FNIII domains under tension explains fibril elasticity.

The second model relies on the conformational change of FN from compact to extended to explain fibril elasticity. FN contain 15 FNIII domains, each a 7-­‐‑strand beta sandwich. Earlier work from our lab used the technique of labeling a buried Cys to study the ‘domain unfolding’ model. They used mutant FNs containing a buried Cys in a single FNIII domain and found that 6 of the 15 FNIII domains label in matrix fibrils. Domain unfolding due to tension, matrix associated conformational changes or spontaneous folding and unfolding are all possible explanation for labeling of the buried Cys. The present study also uses the technique of labeling a buried Cys to address whether it is spontaneous folding and unfolding that labels FNIII domains in cell culture. We used thiol reactive DTNB to measure the kinetics of labeling of buried Cys in eleven FN III domains over a wide range of urea concentrations (0-­‐‑9M). The kinetics data were globally fit using Mathematica. The results are equivalent to those of H-­‐‑D exchange, and

provide a comprehensive analysis of stability and unfolding/folding kinetics of each

domain. For two of the six domains spontaneous folding and unfolding is possibly the reason for labeling in cell culture. For the rest of the four domains it is probably matrix associated conformational changes or tension induced unfolding.

A long-­‐‑standing debate in the protein-­‐‑folding field is whether unfolding rate

constants or folding rate constants correlate to the stability of a protein. FNIII domains all have the same ß sandwich structure but very different stabilities and amino acid sequences. Our study analyzed the kinetics of unfolding and folding and stabilities of eleven FNIII domains and our results show that folding rate constants for FNIII domains are relatively similar and the unfolding rates vary widely and correlate to stability. FN forms a fibrillar matrix and the FN-­‐‑FN interactions during matrix fibril formation are not known. FNI 1-­‐‑9 or the N-­‐‑ terminal region is indispensible for matrix formation and its major binding partner has been shown to be FNIII 2. Earlier work from our lab, using FRET analysis showed that the interaction of FNI 1-­‐‑9 with a destabilized FNIII 2 (missing the G strand, FNIII 2ΔG) reduces the FRET efficiency. This efficiency is restored in the presence of FUD (bacterial adhesion from S. pyogenes) that has been known to interact with FNI 1-­‐‑9 via a tandem ß zipper. In the present study we

use FRET analysis and a series of deletion mutants of FNIII 2ΔG to study the shortest fragment of FNIII 2ΔG that is required to bind FNI 1-­‐‑9. Our results presented here are qualitative and show that FNIII 2ΔC’EFG is the shortest fragment required to bind FNI 1-­‐‑9. Deletion of one more strand abolishes the interaction with FNI 1-­‐‑9.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human adipose stem cells (hASCs) can differentiate into a variety of phenotypes. Native extracellular matrix (e.g., demineralized bone matrix or small intestinal submucosa) can influence the growth and differentiation of stem cells. The hypothesis of this study was that a novel ligament-derived matrix (LDM) would enhance expression of a ligamentous phenotype in hASCs compared to collagen gel alone. LDM prepared using phosphate-buffered saline or 0.1% peracetic acid was mixed with collagen gel (COL) and was evaluated for its ability to induce proliferation, differentiation, and extracellular matrix synthesis in hASCs over 28 days in culture at different seeding densities (0, 0.25 x 10(6), 1 x 10(6), or 2 x 10(6) hASC/mL). Biochemical and gene expression data were analyzed using analysis of variance. Fisher's least significant difference test was used to determine differences between treatments following analysis of variance. hASCs in either LDM or COL demonstrated changes in gene expression consistent with ligament development. hASCs cultured with LDM demonstrated more dsDNA content, sulfated-glycosaminoglycan accumulation, and type I and III collagen synthesis, and released more sulfated-glycosaminoglycan and collagen into the medium compared to hASCs in COL (p type by hASCs, and may provide a novel scaffold material for ligament engineering applications.