3 resultados para Coastal environment

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is increasingly evident that evolutionary processes play a role in how ecological communities are assembled. However the extend to which evolution influences how plants respond to spatial and environmental gradients and interact with each other is less clear. In this dissertation I leverage evolutionary tools and thinking to understand how space and environment affect community composition and patterns of gene flow in a unique system of Atlantic rainforest and restinga (sandy coastal plains) habitats in Southeastern Brazil.

In chapter one I investigate how space and environment affect the population genetic structure and gene flow of Aechmea nudicaulis, a bromeliad species that co-occurs in forest and restinga habitats. I genotyped seven microsatellite loci and sequenced one chloroplast DNA region for individuals collected in 7 pairs of forest / restinga sites. Bayesian genetic clustering analyses show that populations of A. nudicaulis are geographically structured in northern and southern populations, a pattern consistent with broader scale phylogeographic dynamics of the Atlantic rainforest. On the other hand, explicit migration models based on the coalescent estimate that inter-habitat gene flow is less common than gene flow between populations in the same habitat type, despite their geographic discontinuity. I conclude that there is evidence for repeated colonization of the restingas from forest populations even though the steep environmental gradient between habitats is a stronger barrier to gene flow than geographic distance.

In chapter two I use data on 2800 individual plants finely mapped in a restinga plot and on first-year survival of 500 seedlings to understand the roles of phylogeny, functional traits and abiotic conditions in the spatial structuring of that community. I demonstrate that phylogeny is a poor predictor of functional traits in and that convergence in these traits is pervasive. In general, the community is not phylogenetically structured, with at best 14% of the plots deviating significantly from the null model. The functional traits SLA, leaf dry matter content (LDMC), and maximum height also showed no clear pattern of spatial structuring. On the other hand, leaf area is strongly overdispersed across all spatial scales. Although leaf area overdispersion would be generally taken as evidence of competition, I argue that interpretation is probably misleading. Finally, I show that seedling survival is dramatically increased when they grow shaded by an adult individual, suggesting that seedlings are being facilitated. Phylogenetic distance to their adult neighbor has no influence on rates of survival though. Taken together, these results indicate that phylogeny has very limited influence on the fine scale assembly of restinga communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Elsevier Ltd.Sedimentological, ichnological and paleontological analyses of the Early Miocene uppermost Monte León Formation and the lower part of the Santa Cruz Formation were carried out in Rincón del Buque (RDB), a fossiliferous locality north of Río Coyle in Santa Cruz Province, Patagonia, Argentina. This locality is of special importance because it contains the basal contact between the Monte Léon (MLF) and the Santa Cruz (SCF) formations and because it preserves a rich fossil assemblage of marine invertebrates and marine trace fossils, and terrestrial vertebrates and plants, which has not been extensively studied. A ~90m-thick section of the MLF and the SCF that crops out at RDB was selected for this study. Eleven facies associations (FA) are described, which are, from base to top: subtidal-intertidal deposits with Crassotrea orbignyi and bioturbation of the Skolithos-Cruziana ichnofacies (FA1); tidal creek deposits with terrestrial fossil mammals and Ophiomorpha isp. burrows (FA2); tidal flat deposits with Glossifungites ichnofacies (FA3); deposits of tidal channels (FA4) and tidal sand flats (FA5) both with and impoverish Skolithos ichnofacies associated; marsh deposits (FA6); tidal point bar deposits recording a depauperate mixture of both the Skolithos and Cruziana ichnofacies (FA7); fluvial channel deposits (FA8); fluvial point bar deposits (FA9); floodplain deposits (FA10); and pyroclastic and volcaniclastic deposits of the floodplain where terrestrial fossil mammal remains occur (FA11).The transition of the MLF-SCF at RDB reflects a changing depositional environment from the outer part of an estuary (FA1) through the central (FA2-6) to inner part of a tide-dominated estuary (FA7). Finally a fluvial system occurs with single channels of relatively low energy and low sinuosity enclosed by a broad, low-energy floodplain dominated by partially edaphized ash-fall, sheet-flood, and overbank deposits (FA8-11). Pyroclastic and volcaniclastic materials throughout the succession must have been deposited as ash-fall distal facies in a fluvial setting and also were carried by fluvial streams and redeposited in both estuarine and fluvial settings. These materials preserve most of the analyzed terrestrial fossil mammals that characterize the Santacrucian age of the RDB's succession. Episodic sedimentation under volcanic influence, high sedimentation rates and a relatively warm and seasonal climate are inferred for the MLF and SCF section.Lateral continuity of the marker horizons at RDB serve for correlation with other coastal localities such as the lower part of the coastal SCF south of Río Coyle (~17.6-17.4Ma) belonging to the Estancia La Costa Member of the SCF.