2 resultados para Cloud computing, OpenNebula, sincronizzazione, replica, wide area network
em Duke University
Resumo:
Human motion monitoring is an important function in numerous applications. In this dissertation, two systems for monitoring motions of multiple human targets in wide-area indoor environments are discussed, both of which use radio frequency (RF) signals to detect, localize, and classify different types of human motion. In the first system, a coherent monostatic multiple-input multiple-output (MIMO) array is used, and a joint spatial-temporal adaptive processing method is developed to resolve micro-Doppler signatures at each location in a wide-area for motion mapping. The downranges are obtained by estimating time-delays from the targets, and the crossranges are obtained by coherently filtering array spatial signals. Motion classification is then applied to each target based on micro-Doppler analysis. In the second system, multiple noncoherent multistatic transmitters (Tx's) and receivers (Rx's) are distributed in a wide-area, and motion mapping is achieved by noncoherently combining bistatic range profiles from multiple Tx-Rx pairs. Also, motion classification is applied to each target by noncoherently combining bistatic micro-Doppler signatures from multiple Tx-Rx pairs. For both systems, simulation and real data results are shown to demonstrate the ability of the proposed methods for monitoring patient repositioning activities for pressure ulcer prevention.
Resumo:
Cumulon is a system aimed at simplifying the development and deployment of statistical analysis of big data in public clouds. Cumulon allows users to program in their familiar language of matrices and linear algebra, without worrying about how to map data and computation to specific hardware and cloud software platforms. Given user-specified requirements in terms of time, monetary cost, and risk tolerance, Cumulon automatically makes intelligent decisions on implementation alternatives, execution parameters, as well as hardware provisioning and configuration settings -- such as what type of machines and how many of them to acquire. Cumulon also supports clouds with auction-based markets: it effectively utilizes computing resources whose availability varies according to market conditions, and suggests best bidding strategies for them. Cumulon explores two alternative approaches toward supporting such markets, with different trade-offs between system and optimization complexity. Experimental study is conducted to show the efficiency of Cumulon's execution engine, as well as the optimizer's effectiveness in finding the optimal plan in the vast plan space.