3 resultados para Clock and watch making.
em Duke University
Resumo:
Sexual risk behavior among young adults is a serious public health concern; 50% will contract a sexually transmitted infection (STI) before the age of 25. The current study collected self-report personality and sexual history data, as well as neuroimaging, experimental behavioral (e.g., real-time hypothetical sexual decision making data), and self-report sexual arousal data from 120 heterosexual young adults ages 18-26. In addition, longitudinal changes in self-reported sexual behavior were collected from a subset (n = 70) of the participants. The primary aims of the study were (1) to predict differences in self-report sexual behavior and hypothetical sexual decision-making (in response to sexually explicit audio-visual cues) as a function of ventral striatum (VS) and amygdala activity, (2) test whether the association between sexual behavior/decision-making and brain function is moderated by gender, self-reported sexual arousal, and/or trait-level personality factors (i.e., self-control, impulsivity, and sensation seeking) and (3) to examine how the main effects of neural function and interaction effects predict sexual risk behavior over time. Our hypotheses were mostly supported across the sexual behavior and decision-making outcome variables, such that neural risk phenotypes (heightened reward-related ventral striatum activity coupled with decreased threat-related amygdala activity) were associated with greater lifetime sexual partners at baseline measured and over time (longitudinal analyses). Impulsivity moderated the relationship between neural function and self-reported number of sexual partners at baseline and follow up measures, as well as experimental condom use decision-making. Sexual arousal and sensation seeking moderated the relationship between neural function and baseline and follow up self-reports of number of sexual partners. Finally, unique gender differences were observed in the relationship between threat and reward-related neural reactivity and self-reported sexual risk behavior. The results of this study provide initial evidence for the potential role for neurobiological approaches to understanding sexual decision-making and risk behavior. With continued research, establishing biomarkers for sexual risk behavior could help inform the development of novel and more effective individually tailored sexual health prevention and intervention efforts.
Contributions of Dorsal/Ventral Hippocampus and Dorsolateral/Dorsomedial Striatum to Interval Timing
Resumo:
Humans and animals have remarkable capabilities in keeping time and using time as a guide to orient their learning and decision making. Psychophysical models of timing and time perception have been proposed for decades and have received behavioral, anatomical and pharmacological data support. However, despite numerous studies that aimed at delineating the neural underpinnings of interval timing, a complete picture of the neurobiological network of timing in the seconds-to-minutes range remains elusive. Based on classical interval timing protocols and proposing a Timing, Immersive Memory and Emotional Regulation (TIMER) test battery, the author investigates the contributions of the dorsal and ventral hippocampus as well as the dorsolateral and the dorsomedial striatum to interval timing by comparing timing performances in mice after they received cytotoxic lesions in the corresponding brain regions. On the other hand, a timing-based theoretical framework for the emergence of conscious experience that is closely related to the function of the claustrum is proposed so as to serve both biological guidance and the research and evolution of “strong” artificial intelligence. Finally, a new “Double Saturation Model of Interval Timing” that integrates the direct- and indirect- pathways of striatum is proposed to explain the set of empirical findings.
Resumo:
Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.