10 resultados para Clinical performance

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mozambique, with approximately 0.4 physicians and 4.1 nurses per 10,000 people, has one of the lowest ratios of health care providers to population in the world. To rapidly scale up health care coverage, the Mozambique Ministry of Health has pushed for greater investment in training nonphysician clinicians, Tιcnicos de Medicina (TM). Based on identified gaps in TM clinical performance, the Ministry of Health requested technical assistance from the International Training and Education Center for Health (I-TECH) to revise the two-and-a-half-year preservice curriculum. A six-step process was used to revise the curriculum: (i) Conducting a task analysis, (ii) defining a new curriculum approach and selecting an integrated model of subject and competency-based education, (iii) revising and restructuring the 30-month course schedule to emphasize clinical skills, (iv) developing a detailed syllabus for each course, (v) developing content for each lesson, and (vi) evaluating implementation and integrating feedback for ongoing improvement. In May 2010, the Mozambique Minister of Health approved the revised curriculum, which is currently being implemented in 10 training institutions around the country. Key lessons learned: (i) Detailed assessment of training institutions' strengths and weaknesses should inform curriculum revision. (ii) Establishing a Technical Working Group with respected and motivated clinicians is key to promoting local buy-in and ownership. (iii) Providing ready-to-use didactic material helps to address some challenges commonly found in resource-limited settings. (iv) Comprehensive curriculum revision is an important first step toward improving the quality of training provided to health care providers in developing countries. Other aspects of implementation at training institutions and health care facilities must also be addressed to ensure that providers are adequately trained and equipped to provide quality health care services. This approach to curriculum revision and implementation teaches several key lessons, which may be applicable to preservice training programs in other less developed countries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Dropouts and missing data are nearly-ubiquitous in obesity randomized controlled trails, threatening validity and generalizability of conclusions. Herein, we meta-analytically evaluate the extent of missing data, the frequency with which various analytic methods are employed to accommodate dropouts, and the performance of multiple statistical methods. METHODOLOGY/PRINCIPAL FINDINGS: We searched PubMed and Cochrane databases (2000-2006) for articles published in English and manually searched bibliographic references. Articles of pharmaceutical randomized controlled trials with weight loss or weight gain prevention as major endpoints were included. Two authors independently reviewed each publication for inclusion. 121 articles met the inclusion criteria. Two authors independently extracted treatment, sample size, drop-out rates, study duration, and statistical method used to handle missing data from all articles and resolved disagreements by consensus. In the meta-analysis, drop-out rates were substantial with the survival (non-dropout) rates being approximated by an exponential decay curve (e(-lambdat)) where lambda was estimated to be .0088 (95% bootstrap confidence interval: .0076 to .0100) and t represents time in weeks. The estimated drop-out rate at 1 year was 37%. Most studies used last observation carried forward as the primary analytic method to handle missing data. We also obtained 12 raw obesity randomized controlled trial datasets for empirical analyses. Analyses of raw randomized controlled trial data suggested that both mixed models and multiple imputation performed well, but that multiple imputation may be more robust when missing data are extensive. CONCLUSION/SIGNIFICANCE: Our analysis offers an equation for predictions of dropout rates useful for future study planning. Our raw data analyses suggests that multiple imputation is better than other methods for handling missing data in obesity randomized controlled trials, followed closely by mixed models. We suggest these methods supplant last observation carried forward as the primary method of analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As many as 20-70% of patients undergoing breast conserving surgery require repeat surgeries due to a close or positive surgical margin diagnosed post-operatively [1]. Currently there are no widely accepted tools for intra-operative margin assessment which is a significant unmet clinical need. Our group has developed a first-generation optical visible spectral imaging platform to image the molecular composition of breast tumor margins and has tested it clinically in 48 patients in a previously published study [2]. The goal of this paper is to report on the performance metrics of the system and compare it to clinical criteria for intra-operative tumor margin assessment. The system was found to have an average signal to noise ratio (SNR) >100 and <15% error in the extraction of optical properties indicating that there is sufficient SNR to leverage the differences in optical properties between negative and close/positive margins. The probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-600 nm which is consistent with the pathologic criterion for clear margins of 0-2 mm. There was <1% cross-talk between adjacent channels of the multi-channel probe which shows that multiple sites can be measured simultaneously with negligible cross-talk between adjacent sites. Lastly, the system and measurement procedure were found to be reproducible when evaluated with repeated measures, with a low coefficient of variation (<0.11). The only aspect of the system not optimized for intra-operative use was the imaging time. The manuscript includes a discussion of how the speed of the system can be improved to work within the time constraints of an intra-operative setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The -6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical window model for the rodent dorsum was used to perform chronic and quantitative intravital microscopy and laser Doppler flowmetry of microvascular networks adjacent to functional and non-functional glucose sensors. The one-sided configuration afforded direct, real-time observation of the tissue response to bare (unmodified, smooth surface) sensors and sensors coated with porous poly-L-lactic acid (PLLA). Microvessel length density and red blood cell flux (blood perfusion) within 1 mm of the sensors were measured bi-weekly over 2 weeks. When non-functional sensors were fully implanted beneath the windows, the porous coated sensors had two-fold more vasculature and significantly higher blood perfusion than bare sensors on Day 14. When functional sensors were implanted percutaneously, as in clinical use, no differences in baseline current, neovascularization, or tissue perfusion were observed between bare and porous coated sensors. However, percutaneously implanted bare sensors had two-fold more vascularity than fully implanted bare sensors by Day 14, indicating the other factors, such as micromotion, might be stimulating angiogenesis. Despite increased angiogenesis adjacent to percutaneous sensors, modest sensor current attenuation occurred over 14 days, suggesting that factors other than angiogenesis may play a dominant role in determining sensor function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1 × 1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden's index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Incorporation of multiple enrichment biomarkers into prospective clinical trials is an active area of investigation, but the factors that determine clinical trial enrollment following a molecular prescreening program have not been assessed. PATIENTS AND METHODS: Patients with 5-fluorouracil-refractory metastatic colorectal cancer at the MD Anderson Cancer Center were offered screening in the Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC) program to identify eligibility for companion phase I or II clinical trials with a therapy targeted to an aberration detected in the patient, based on testing by immunohistochemistry, targeted gene sequencing panels, and CpG island methylation phenotype assays. RESULTS: Between August 2010 and December 2013, 484 patients were enrolled, 458 (95%) had a biomarker result, and 157 (32%) were enrolled on a clinical trial (92 on biomarker-selected and 65 on nonbiomarker selected). Of the 458 patients with a biomarker result, enrollment on biomarker-selected clinical trials was ninefold higher for predefined ATTACC-companion clinical trials as opposed to nonpredefined biomarker-selected clinical trials, 17.9% versus 2%, P < 0.001. Factors that correlated positively with trial enrollment in multivariate analysis were higher performance status, older age, lack of standard of care therapy, established patient at MD Anderson, and the presence of an eligible biomarker for an ATTACC-companion study. Early molecular screening did result in a higher rate of patients with remaining standard of care therapy enrolling on ATTACC-companion clinical trials, 45.1%, in contrast to nonpredefined clinical trials, 22.7%; odds ratio 3.1, P = 0.002. CONCLUSIONS: Though early molecular prescreening for predefined clinical trials resulted in an increase rate of trial enrollment of nonrefractory patients, the majority of patients enrolled on clinical trials were refractory to standard of care therapy. Within molecular prescreening programs, tailoring screening for preidentified and open clinical trials, temporally linking screening to treatment and optimizing both patient and physician engagement are efforts likely to improve enrollment on biomarker-selected clinical trials. CLINICAL TRIALS NUMBER: The study NCT number is NCT01196130.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2016, Serdi and Springer-Verlag France.Objectives: The association between cognitive function and cholesterol levels is poorly understood and inconsistent results exist among the elderly. The purpose of this study is to investigate the association of cholesterol level with cognitive performance among Chinese elderly. Design: A cross-sectional study was implemented in 2012 and data were analyzed using generalized additive models, linear regression models and logistic regression models. Setting: Community-based setting in eight longevity areas in China. Subjects: A total of 2000 elderly aged 65 years and over (mean 85.8±12.0 years) participated in this study. Measurements: Total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) concentration were determined and cognitive impairment was defined as Mini-Mental State Examination (MMSE) score≤23. Results: There was a significant positive linear association between TC, TG, LDL-C, HDL-C and MMSE score in linear regression models. Each 1 mmol/L increase in TC, TG, LDL-C and HDL-C corresponded to a decreased risk of cognitive impairment in logistic regression models. Compared with the lowest tertile, the highest tertile of TC, LDL-C and HDL-C had a lower risk of cognitive impairment. The adjusted odds ratios and 95% CI were 0.73(0.62–0.84) for TC, 0.81(0.70–0.94) for LDL-C and 0.81(0.70–0.94) for HDL-C. There was no gender difference in the protective effects of high TC and LDL-C levels on cognitive impairment. However, for high HDL-C levels the effect was only observed in women. High TC, LDL-C and HDL-C levels were associated with lower risk of cognitive impairment in the oldest old (aged 80 and older), but not in the younger elderly (aged 65 to 79 years). Conclusions: These findings suggest that cholesterol levels within the high normal range are associated with better cognitive performance in Chinese elderly, specifically in the oldest old. With further validation, low cholesterol may serve a clinical indicator of risk for cognitive impairment in the elderly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is an investigation into collimator designs for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact neutron imaging system that can be implemented in a hospital. The envisioned application is for a spectroscopic imaging technique called neutron stimulated emission computed tomography (NSECT).

Previous NSECT studies have been performed using a Van-de-Graaff accelerator at the Triangle Universities Nuclear Laboratory (TUNL) in Duke University. This facility has provided invaluable research into the development of NSECT. To transition the current imaging method into a clinically feasible system, there is a need for a high-intensity fast neutron source that can produce collimated beams. The DD neutron generator from Adelphi Technologies Inc. is being explored as a possible candidate to provide the uncollimated neutrons. This DD generator is a compact source that produces 2.5 MeV fast neutrons with intensities of 1012 n/s (4π). The neutron energy is sufficient to excite most isotopes of interest in the body with the exception of carbon and oxygen. However, a special collimator is needed to collimate the 4π neutron emission into a narrow beam. This work describes the development and evaluation of a series of collimator designs to collimate the DD generator for narrow beams suitable for NSECT imaging.

A neutron collimator made of high-density polyethylene (HDPE) and lead was modeled and simulated using the GEANT4 toolkit. The collimator was designed as a 52 x 52 x 52 cm3 HDPE block coupled with 1 cm lead shielding. Non-tapering (cylindrical) and tapering (conical) opening designs were modeled into the collimator to permit passage of neutrons. The shape, size, and geometry of the aperture were varied to assess the effects on the collimated neutron beam. Parameters varied were: inlet diameter (1-5 cm), outlet diameter (1-5 cm), aperture diameter (0.5-1.5 cm), and aperture placement (13-39 cm). For each combination of collimator parameters, the spatial and energy distributions of neutrons and gammas were tracked and analyzed to determine three performance parameters: neutron beam-width, primary neutron flux, and the output quality. To evaluate these parameters, the simulated neutron beams are then regenerated for a NSECT breast scan. Scan involved a realistic breast lesion implanted into an anthropomorphic female phantom.

This work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-collimated neutron beam that can be used for NSECT breast imaging. The aperture diameter showed a strong correlation to the beam-width, where the collimated neutron beam-width was about 10% larger than the physical aperture diameter. In addition, a collimator opening consisting of a tapering inlet and cylindrical outlet allowed greater neutron throughput when compared to a simple cylindrical opening. The tapering inlet design can allow additional neutron throughput when the neck is placed farther from the source. On the other hand, the tapering designs also decrease output quality (i.e. increase in stray neutrons outside the primary collimated beam). All collimators are cataloged in measures of beam-width, neutron flux, and output quality. For a particular NSECT application, an optimal choice should be based on the collimator specifications listed in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.