5 resultados para Clinical approach

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As more diagnostic testing options become available to physicians, it becomes more difficult to combine various types of medical information together in order to optimize the overall diagnosis. To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion technique to combine heterogeneous information, such as from different modalities, feature categories, or institutions. For classifier comparison we used two performance metrics: The receiving operator characteristic (ROC) area under the curve [area under the ROC curve (AUC)] and the normalized partial area under the curve (pAUC). This study used four classifiers: Linear discriminant analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We applied each of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One of mass lesion features and a much more challenging one of microcalcification lesion features. For the calcification data set, DF-A outperformed the other classifiers in terms of AUC (p < 0.02) and achieved AUC=0.85 +/- 0.01. The DF-P surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC=0.38 +/- 0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) and achieved AUC=0.94 +/- 0.01. Although for this data set there were no statistically significant differences among the classifiers' pAUC values (pAUC=0.57 +/- 0.07 to 0.67 +/- 0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically significant performance measures, such as AUC and pAUC, and sometimes outperformed two well-known machine-learning techniques when applied to two different breast cancer data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Memory for complex everyday events involving vision, hearing, smell, emotion, narrative, and language cannot be understood without considering the properties of the separate systems that process and store each of these forms of information. Using this premise as a starting point, my colleagues and I found that visual memory plays a central role in autobiographical memory: The strength of recollection of an event is predicted best by the vividness of its visual imagery, and a loss of visual memory causes a general amnesia. Examination of autobiographical memories in individuals with posttraumatic stress disorder (PTSD) suggests that the lack of coherence often noted in memories of traumatic events is not due to a lack of coherence either of the memory itself or of the narrative that integrates the memory into the life story. Rather, making the traumatic memory central to the life story correlates positively with increased PTSD symptoms. The basic-systems approach has yielded insights into autobiographical memory's phenomenology, neuropsychology, clinical disorders, and neural basis. Copyright © 2005 American Psychological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1 × 1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden's index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has become a routine clinical procedure for localization of language and motor brain regions and has been replacing more invasive preoperative procedures. However, the fMRI results from these tasks are not always reproducible even from the same patient. Evaluating the reproducibility of language and speech mapping is especially complicated due to the complex brain circuitry that may become activated during the functional task. Non-language areas such as sensory, attention, decision-making, and motor brain regions may also be activated in addition to the specific language regions during a traditional sentence-completion task. In this study, I test a new approach, which utilizes 4-minute video-based tasks, to map language and speech brain regions for patients undergoing brain surgery. Results from 35 subjects have shown that the video-based task activates Wernicke’s area, as well as Broca’s area in most subjects. The computed laterality indices, which indicate the dominant hemisphere from that functional task, have indicated left dominance from the video-based tasks. This study has shown that the video-based task may be an alternative method for localization of language and speech brain regions for patients who are unable to complete the sentence-completion task.