2 resultados para Climatic Variability of the Mediterranean Paleo-circulation
em Duke University
Resumo:
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Resumo:
Assays that assess cellular mediated immune responses performed under Good Clinical Laboratory Practice (GCLP) guidelines are required to provide specific and reproducible results. Defined validation procedures are required to establish the Standard Operating Procedure (SOP), include pass and fail criteria, as well as implement positivity criteria. However, little to no guidance is provided on how to perform longitudinal assessment of the key reagents utilized in the assay. Through the External Quality Assurance Program Oversight Laboratory (EQAPOL), an Interferon-gamma (IFN-γ) Enzyme-linked immunosorbent spot (ELISpot) assay proficiency testing program is administered. A limit of acceptable within site variability was estimated after six rounds of proficiency testing (PT). Previously, a PT send-out specific within site variability limit was calculated based on the dispersion (variance/mean) of the nine replicate wells of data. Now an overall 'dispersion limit' for the ELISpot PT program within site variability has been calculated as a dispersion of 3.3. The utility of this metric was assessed using a control sample to calculate the within (precision) and between (accuracy) experiment variability to determine if the dispersion limit could be applied to bridging studies (studies that assess lot-to-lot variations of key reagents) for comparing the accuracy of results with new lots to results with old lots. Finally, simulations were conducted to explore how this dispersion limit could provide guidance in the number of replicate wells needed for within and between experiment variability and the appropriate donor reactivity (number of antigen-specific cells) to be used for the evaluation of new reagents. Our bridging study simulations indicate using a minimum of six replicate wells of a control donor sample with reactivity of at least 150 spot forming cells per well is optimal. To determine significant lot-to-lot variations use the 3.3 dispersion limit for between and within experiment variability.