4 resultados para Claramonte y Corroy, Andrés de, d. 1626.
em Duke University
Resumo:
The interaction between stromal cell-derived factor-1 (SDF-1) with CXCR4 chemokine receptors plays an important role in hematopoiesis following hematopoietic stem cell transplantation. We examined the efficacy of post transplant administration of a specific CXCR4 antagonist (AMD3100) in improving animal survival and in enhancing donor hematopoietic cell engraftment using a congeneic mouse transplantation model. AMD3100 was administered subcutaneously at 5 mg/kg body weight 3 times a week beginning at day +2 post-transplant. Post-transplant administration of AMD3100 significantly improves animal survival. AMD3100 reduces pro-inflammatory cytokine/chemokine production. Furthermore, post transplant administration of AMD3100 selectively enhances donor cell engraftment and promotes recovery of all donor cell lineages (myeloid cells, T and B lymphocytes, erythrocytes and platelets). This enhancement results from a combined effect of increased marrow niche availability and greater cell division induced by AMD3100. Our studies shed new lights into the biological roles of SDF-1/CXCR4 interaction in hematopoietic stem cell engraftment following transplantation and in transplant-related mortality. Our results indicate that AMD3100 provides a novel approach for enhancing hematological recovery following transplantation, and will likely benefit patients undergoing transplantation.
Resumo:
We report the first measurement of the double-spin asymmetry A{LT} for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized {3}He target. The kinematics focused on the valence quark region, 0.16
Construction of invisibility cloaks of arbitrary shape and size using planar layers of metamaterials
Resumo:
Transformation optics (TO) is a powerful tool for the design of electromagnetic and optical devices with novel functionality derived from the unusual properties of the transformation media. In general, the fabrication of TO media is challenging, requiring spatially varying material properties with both anisotropic electric and magnetic responses. Though metamaterials have been proposed as a path for achieving such complex media, the required properties arising from the most general transformations remain elusive, and cannot implemented by state-of-the-art fabrication techniques. Here, we propose faceted approximations of TO media of arbitrary shape in which the volume of the TO device is divided into flat metamaterial layers. These layers can be readily implemented by standard fabrication and stacking techniques. We illustrate our approximation approach for the specific example of a two-dimensional, omnidirectional "invisibility cloak", and quantify its performance using the total scattering cross section as a practical figure of merit. © 2012 American Institute of Physics.
Resumo:
Acellular dermal matrices (ADM) are commonly used in reconstructive procedures and rely on host cell invasion to become incorporated into host tissues. We investigated different approaches to adipose-derived stem cells (ASCs) engraftment into ADM to enhance this process. Lewis rat adipose-derived stem cells were isolated and grafted (3.0 × 10(5) cells) to porcine ADM disks (1.5 mm thick × 6 mm diameter) using either passive onlay or interstitial injection seeding techniques. Following incubation, seeding efficiency and seeded cell viability were measured in vitro. In addition, Eighteen Lewis rats underwent subcutaneous placement of ADM disk either as control or seeded with PKH67 labeled ASCs. ADM disks were seeded with ASCs using either onlay or injection techniques. On day 7 and or 14, ADM disks were harvested and analyzed for host cell infiltration. Onlay and injection techniques resulted in unique seeding patterns; however cell seeding efficiency and cell viability were similar. In-vivo studies showed significantly increased host cell infiltration towards the ASCs foci following injection seeding in comparison to control group (p < 0.05). Moreover, regional endothelial cell invasion was significantly greater in ASCs injected grafts in comparison to onlay seeding (p < 0.05). ADM can successfully be engrafted with ASCs. Interstitial engraftment of ASCs into ADM via injection enhances regional infiltration of host cells and angiogenesis, whereas onlay seeding showed relatively broad and superficial cell infiltration. These findings may be applied to improve the incorporation of avascular engineered constructs.