3 resultados para Center of mass

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a measurement of the differential cross section for the gamman-->pi- p process from the CLAS detector at Jefferson Laboratory in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles (thetac.m.) between 50 degrees and 115 degrees. We confirm a previous indication of a broad enhancement around a c.m. energy ([sqrt]s) of 2.1 GeV at thetac.m.=90 degrees in the scaled differential cross section s7dsigma/dt and a rapid falloff in a center-of-mass energy region of about 400 MeV following the enhancement. Our data show an angular dependence of this enhancement as the suggested scaling region is approached for thetac.m. from 70 degrees to 105 degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for new heavy resonances decaying to boson pairs (WZ, WW or ZZ) using 20.3 inverse femtobarns of proton-proton collision data at a center of mass energy of 8 TeV is presented. The data were recorded by the ATLAS detector at the Large Hadron Collider (LHC) in 2012. The analysis combines several search channels with the leptonic, semi-leptonic and fully hadronic final states. The diboson invariant mass spectrum is studied for local excesses above the Standard Model background prediction, and no significant excess is observed for the combined analysis. 95$\%$ confidence limits are set on the cross section times branching ratios for three signal models: an extended gauge model with a heavy W boson, a bulk Randall-Sundrum model with a spin-2 graviton, and a simplified model with a heavy vector triplet. Among the individual search channels, the fully-hadronic channel is predominantly presented where boson tagging technique and jet substructure cuts are used. Local excesses are found in the dijet mass distribution around 2 TeV, leading to a global significance of 2.5 standard deviations. This deviation from the Standard Model prediction results in many theory explanations, and the possibilities could be further explored using the LHC Run 2 data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Pathological gaits have been shown to limit transfer between potential (PE) and kinetic (KE) energy during walking, which can increase locomotor costs. The purpose of this study was to examine whether energy exchange would be limited in people with knee osteoarthritis (OA). METHODS: Ground reaction forces during walking were collected from 93 subjects with symptomatic knee OA (self-selected and fast speeds) and 13 healthy controls (self-selected speed) and used to calculate their center of mass (COM) movements, PE and KE relationships, and energy recovery during a stride. Correlations and linear regressions examined the impact of energy fluctuation phase and amplitude, walking velocity, body mass, self-reported pain, and radiographic severity on recovery. Paired t-tests were run to compare energy recovery between cohorts. RESULTS: Symptomatic knee OA subjects displayed lower energetic recovery during self-selected walking speeds than healthy controls (P = 0.0018). PE and KE phase relationships explained the majority (66%) of variance in recovery. Recovery had a complex relationship with velocity and its change across speeds was significantly influenced by the self-selected walking speed of each subject. Neither radiographic OA scores nor subject self-reported measures demonstrated any relationship with energy recovery. CONCLUSIONS: Knee OA reduces effective exchange of PE and KE, potentially increasing the muscular work required to control movements of the COM. Gait retraining may return subjects to more normal patterns of energy exchange and allow them to reduce fatigue.