7 resultados para Cataloging module

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BUZ/Znf-UBP domain is a protein module found in the cytoplasmic deacetylase HDAC6, E3 ubiquitin ligase BRAP2/IMP, and a subfamily of ubiquitin-specific proteases. Although several BUZ domains have been shown to bind ubiquitin with high affinity by recognizing its C-terminal sequence (RLRGG-COOH), it is currently unknown whether the interaction is sequence-specific or whether the BUZ domains are capable of binding to proteins other than ubiquitin. In this work, the BUZ domains of HDAC6 and Ubp-M were subjected to screening against a one-bead-one-compound (OBOC) peptide library that exhibited random peptide sequences with free C-termini. Sequence analysis of the selected binding peptides as well as alanine scanning studies revealed that the BUZ domains require a C-terminal Gly-Gly motif for binding. At the more N-terminal positions, the two BUZ domains have distinct sequence specificities, allowing them to bind to different peptides and/or proteins. A database search of the human proteome on the basis of the BUZ domain specificities identified 11 and 24 potential partner proteins for Ubp-M and HDAC6 BUZ domains, respectively. Peptides corresponding to the C-terminal sequences of four of the predicted binding partners (FBXO11, histone H4, PTOV1, and FAT10) were synthesized and tested for binding to the BUZ domains by fluorescence polarization. All four peptides bound to the HDAC6 BUZ domain with low micromolar K(D) values and less tightly to the Ubp-M BUZ domain. Finally, in vitro pull-down assays showed that the Ubp-M BUZ domain was capable of binding to the histone H3-histone H4 tetramer protein complex. Our results suggest that BUZ domains are sequence-specific protein-binding modules, with each BUZ domain potentially binding to a different subset of proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose generalized sampling approaches for measuring a multi-dimensional object using a compact compound-eye imaging system called thin observation module by bound optics (TOMBO). This paper shows the proposed system model, physical examples, and simulations to verify TOMBO imaging using generalized sampling. In the system, an object is modulated and multiplied by a weight distribution with physical coding, and the coded optical signal is integrated on to a detector array. A numerical estimation algorithm employing a sparsity constraint is used for object reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Droplet-based digital microfluidics technology has now come of age, and software-controlled biochips for healthcare applications are starting to emerge. However, today's digital microfluidic biochips suffer from the drawback that there is no feedback to the control software from the underlying hardware platform. Due to the lack of precision inherent in biochemical experiments, errors are likely during droplet manipulation; error recovery based on the repetition of experiments leads to wastage of expensive reagents and hard-to-prepare samples. By exploiting recent advances in the integration of optical detectors (sensors) into a digital microfluidics biochip, we present a physical-aware system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure the biochip. A cyberphysical resynthesis technique is used to recompute electrode-actuation sequences, thereby deriving new schedules, module placement, and droplet routing pathways, with minimum impact on the time-to-response. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that the first complex homology of the Johnson subgroup of the Torelli group Tg is a non-trivial, unipotent Tg-module for all g ≥ 4 and give an explicit presentation of it as a Sym H 1(Tg,C)-module when g ≥ 6. We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the infinitesimal Alexander invariant of the associated graded Lie algebra of G. In this setup, we also obtain a precise nilpotence test. © European Mathematical Society 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Many families rely on child care outside the home, making these settings important influences on child development. Nearly 1.5 million children in the U.S. spend time in family child care homes (FCCHs), where providers care for children in their own residences. There is some evidence that children in FCCHs are heavier than those cared for in centers. However, few interventions have targeted FCCHs for obesity prevention. This paper will describe the application of the Intervention Mapping (IM) framework to the development of a childhood obesity prevention intervention for FCCHs METHODS: Following the IM protocol, six steps were completed in the planning and development of an intervention targeting FCCHs: needs assessment, formulation of change objectives matrices, selection of theory-based methods and strategies, creation of intervention components and materials, adoption and implementation planning, and evaluation planning RESULTS: Application of the IM process resulted in the creation of the Keys to Healthy Family Child Care Homes program (Keys), which includes three modules: Healthy You, Healthy Home, and Healthy Business. Delivery of each module includes a workshop, educational binder and tool-kit resources, and four coaching contacts. Social Cognitive Theory and Self-Determination Theory helped guide development of change objective matrices, selection of behavior change strategies, and identification of outcome measures. The Keys program is currently being evaluated through a cluster-randomized controlled trial CONCLUSIONS: The IM process, while time-consuming, enabled rigorous and systematic development of intervention components that are directly tied to behavior change theory and may increase the potential for behavior change within the FCCHs.