8 resultados para Capture Enzyme-immunoassay
em Duke University
Resumo:
A set of 13 US based experts in post-combustion and oxy-fuel combustion CO2 capture systems responded to an extensive questionnaire asking their views on the present status and future expected performance and costs for amine-based, chilled ammonia, and oxy-combustion retrofits of coal-fired power plants. This paper presents the experts' responses for technology maturity, ideal plant characteristics for early adopters, and the extent to which R&D and deployment incentives will impact costs. It also presents the best estimates and 95% confidence limits of the energy penalties associated with amine-based systems. The results show a general consensus that amine-based systems are closer to commercial application, but potential for improving performance and lowering costs is limited; chilled ammonia and oxy-combustion offer greater potential for cost reductions, but not without greater uncertainty regarding scale and technical feasibility. © 2011 Elsevier Ltd.
Resumo:
BACKGROUND: Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS: B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS: These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.
Resumo:
BACKGROUND: Historically, only partial assessments of data quality have been performed in clinical trials, for which the most common method of measuring database error rates has been to compare the case report form (CRF) to database entries and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs typically leveraged for quality measurement are not used in EDC processes. METHODS AND PRINCIPAL FINDINGS: The National Institute on Drug Abuse Treatment Clinical Trials Network has developed, implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-to-database error rates reported in the published literature. We attribute this largely to an absence of medical record abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions. CONCLUSIONS: Historically, medical record abstraction is the most significant source of error by an order of magnitude, and should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent on the amount of structured data collection in the clinical setting and on the complexity of the medical record, dependencies that should be considered when developing data quality benchmarks.
Resumo:
A total of 54 free-ranging monkeys were captured and marked in Santa Rosa National Park, Costa Rica, during May 1985, and an additional 17 were captured during March 1986. The animals were darted using a blowpipe or a CO2 gun. The drugs used were Ketaset, Sernylan and Telazol. Ketaset was effective for Cebus capucinus but unsuccessful for Alouatta palliata and Ateles geoffroyi. Sernylan was successful for A. geoffroyi and A. palliata but is no longer commercially available. Telazol proved to be an excellent alternative capture drug for both A. palliata and A. geoffroyi.
Resumo:
We have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.
Resumo:
Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.
Resumo:
Effective dosages for enzyme replacement therapy (ERT) in Pompe disease are much higher than for other lysosomal storage disorders, which has been attributed to low cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle. We have previously demonstrated the benefit of increased CI-MPR-mediated uptake of recombinant human acid-α-glucosidase during ERT in mice with Pompe disease following addition of albuterol therapy. Currently we have completed a pilot study of albuterol in patients with late-onset Pompe disease already on ERT for >2 yr, who were not improving further. The 6-min walk test (6MWT) distance increased in all 7 subjects at wk 6 (30±13 m; P=0.002), wk 12 (34±14 m; P=0.004), and wk 24 (42±37 m; P=0.02), in comparison with baseline. Grip strength was improved significantly for both hands at wk 12. Furthermore, individual subjects reported benefits; e.g., a female patient could stand up from sitting on the floor much more easily (time for supine to standing position decreased from 30 to 11 s), and a male patient could readily swing his legs out of his van seat (hip abduction increased from 1 to 2+ on manual muscle testing). Finally, analysis of the quadriceps biopsies suggested increased CI-MPR at wk 12 (P=0.08), compared with baseline. With the exception of 1 patient who succumbed to respiratory complications of Pompe disease in the first week, only mild adverse events have been reported, including tremor, transient difficulty falling asleep, and mild urinary retention (requiring early morning voiding). Therefore, this pilot study revealed initial safety and efficacy in an open label study of adjunctive albuterol therapy in patients with late-onset Pompe disease who had been stable on ERT with no improvements noted over the previous several years.
Resumo:
Few epidemiologic studies describe longitudinal liver chemistry (LC) elevations in cancer patients. A population-based retrospective cohort was identified from 31 Phase 2-3 oncology trials (excluding targeted therapies) conducted from 1985 to 2005 to evaluate background rates of LC elevations in patients (n = 3998) with or without liver metastases. Patients with baseline liver metastases (29% of patients) presented with a 3% prevalence of alanine transaminase (ALT) ≥ 3x upper limits normal (ULN) and 0.2% prevalence of bilirubin ≥ 3xULN. During follow-up, the incidence (per 1000 person-months) of new onset ALT elevations ≥3xULN was 6.1 (95% CI: 4.5, 8.0) and 2.2 (95% CI: 0.9, 4.5) in patients without and with liver metastases, respectively. No new incident cases of ALT and bilirubin elevations suggestive of severe liver injury occurred among those with liver metastases; a single case occurred among those without metastasis. Regardless of the presence of liver metastases, LC elevations were rare in cancer patients during oncology trials, which may be due to enrollment criteria. Our study validates uniform thresholds for detection of LC elevations in oncology studies and serves as an empirical referent point for comparing liver enzyme abnormalities in oncology trials of novel targeted therapies. These data support uniform LC stopping criteria in oncology trials.