5 resultados para Canopy treefrog
em Duke University
Resumo:
An analytical model was developed to describe in-canopy vertical distribution of ammonia (NH(3)) sources and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy mean NH(3) concentration and wind speed profiles. This model was applied to quantify in-canopy air-surface exchange rates and above-canopy NH(3) fluxes in a fertilized corn (Zea mays) field. Modeled air-canopy NH(3) fluxes agreed well with independent above-canopy flux estimates. Based on the model results, the urea fertilized soil surface was a consistent source of NH(3) one month following the fertilizer application, whereas the vegetation canopy was typically a net NH(3) sink with the lower portion of the canopy being a constant sink. The model results suggested that the canopy was a sink for some 70% of the estimated soil NH(3) emissions. A logical conclusion is that parametrization of within-canopy processes in air quality models are necessary to explore the impact of agricultural field level management practices on regional air quality. Moreover, there are agronomic and environmental benefits to timing liquid fertilizer applications as close to canopy closure as possible. Finally, given the large within-canopy mean NH(3) concentration gradients in such agricultural settings, a discussion about the suitability of the proposed model is also presented.
Resumo:
Dental microwear researchers consider exogenous grit or dust to be an important cause of microscopic wear on primate teeth. No study to date has examined the accumulation of such abrasives on foods eaten by primates in the forest. This investigation introduces a method to collect dust at various heights in the canopy. Results from dust collection studies conducted at the primate research stations at Ketambe in Indonesia, and Hacienda La Pacifica in Costa Rica indicate that 1) grit collects throughout the canopy in both open country and tropical rain forest environments; and 2) the sizes and concentrations of dust particles accumulated over a fixed period of time differ depending on site location and season of investigation. These results may hold important implications for the interpretation of microwear on primate teeth.
Resumo:
Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as
`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol
particles and greenhouse gases (GHGs) as responses to their surrounding environments.
While the signicance of quantifying the exchange rates of GHGs and atmospheric
aerosol particles between the terrestrial biosphere and the atmosphere is
hardly questioned in many scientic elds, the progress in improving model predictability,
data interpretation or the combination of the two remains impeded by
the lack of precise framework elucidating their dynamic transport processes over a
wide range of spatiotemporal scales. The diculty in developing prognostic modeling
tools to quantify the source or sink strength of these atmospheric substances
can be further magnied by the fact that the climate system is also sensitive to the
feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,
the emergent need is to reduce uncertainties when assessing this complex and dynamic
feedback cycle that is necessary to support the decisions of mitigation and
adaptation policies associated with human activities (e.g., anthropogenic emission
controls and land use managements) under current and future climate regimes.
With the goal to improve the predictions for the biosphere-atmosphere exchange
of biologically active gases and atmospheric aerosol particles, the main focus of this
dissertation is on revising and up-scaling the biotic and abiotic transport processes
from leaf to canopy scales. The validity of previous modeling studies in determining
iv
the exchange rate of gases and particles is evaluated with detailed descriptions of their
limitations. Mechanistic-based modeling approaches along with empirical studies
across dierent scales are employed to rene the mathematical descriptions of surface
conductance responsible for gas and particle exchanges as commonly adopted by all
operational models. Specically, how variation in horizontal leaf area density within
the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes
and thereby the ultrane particle collection eciency at the leaf/branch scale
is explored using wind tunnel experiments with interpretations by a porous media
model and a scaling analysis. A multi-layered and size-resolved second-order closure
model combined with particle
uxes and concentration measurements within and
above a forest is used to explore the particle transport processes within the canopy
sub-layer and the partitioning of particle deposition onto canopy medium and forest
oor. For gases, a modeling framework accounting for the leaf-level boundary layer
eects on the stomatal pathway for gas exchange is proposed and combined with sap
ux measurements in a wind tunnel to assess how leaf-level transpiration varies with
increasing wind speed. How exogenous environmental conditions and endogenous
soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and
below-ground water dynamics in the soil-plant system and shape plant responses
to droughts is assessed by a porous media model that accommodates the transient
water
ow within the plant vascular system and is coupled with the aforementioned
leaf-level gas exchange model and soil-root interaction model. It should be noted
that tackling all aspects of potential issues causing uncertainties in forecasting the
feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single
dissertation but further research questions and opportunities based on the foundation
derived from this dissertation are also brie
y discussed.
Resumo:
In the ancient and acidic Ultisol soils of the Southern Piedmont, USA, we studied changes in trace element biogeochemistry over four decades, a period during which formerly cultivated cotton fields were planted with pine seedlings that grew into mature forest stands. In 16 permanent plots, we estimated 40-year accumulations of trace elements in forest biomass and O horizons (between 1957 and 1997), and changes in bioavailable soil fractions indexed by extractions of 0.05 mol/L HCl and 0.2 mol/L acid ammonium oxalate (AAO). Element accumulations in 40-year tree biomass plus O horizons totaled 0.9, 2.9, 4.8, 49.6, and 501.3 kg/ha for Cu, B, Zn, Mn, and Fe, respectively. In response to this forest development, samples of the upper 0.6-m of mineral soil archived in 1962 and 1997 followed one of three patterns. (1) Extractable B and Mn were significantly depleted, by -4.1 and -57.7 kg/ha with AAO, depletions comparable to accumulations in biomass plus O horizons, 2.9 and 49.6 kg/ha, respectively. Tree uptake of B and Mn from mineral soil greatly outpaced resupplies from atmospheric deposition, mineral weathering, and deep-root uptake. (2) Extractable Zn and Cu changed little during forest growth, indicating that nutrient resupplies kept pace with accumulations by the aggrading forest. (3) Oxalate-extractable Fe increased substantially during forest growth, by 275.8 kg/ha, about 10-fold more than accumulations in tree biomass (28.7 kg/ha). The large increases in AAO-extractable Fe in surficial 0.35-m mineral soils were accompanied by substantial accretions of Fe in the forest's O horizon, by 473 kg/ha, amounts that dwarfed inputs via litterfall and canopy throughfall, indicating that forest Fe cycling is qualitatively different from that of other macro- and micronutrients. Bioturbation of surficial forest soil layers cannot account for these fractions and transformations of Fe, and we hypothesize that the secondary forest's large inputs of organic additions over four decades has fundamentally altered soil Fe oxides, potentially altering the bioavailability and retention of macro- and micronutrients, contaminants, and organic matter itself. The wide range of responses among the ecosystem's trace elements illustrates the great dynamics of the soil system over time scales of decades.
Resumo:
© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (I