3 resultados para Cancer cell migration
em Duke University
Resumo:
Dynamic processes such as morphogenesis and tissue patterning require the precise control of many cellular processes, especially cell migration. Historically, these processes are thought to be mediated by genetic and biochemical signaling pathways. However, recent advances have unraveled a previously unappreciated role of mechanical forces in regulating these homeostatic processes in of multicellular systems. In multicellular systems cells adhere to both deformable extracellular matrix (ECM) and other cells, which are sources of applied forces and means of mechanical support. Cells detect and respond to these mechanical signals through a poorly understood process called mechanotransduction, which can have profound effects on processes such as cell migration. These effects are largely mediated by the sub cellular structures that link cells to the ECM, called focal adhesions (FAs), or cells to other cells, termed adherens junctions (AJs).
Overall this thesis is comprised of my work on identifying a novel force dependent function of vinculin, a protein which resides in both FAs and AJs - in dynamic process of collective migration. Using a collective migration assay as a model for collective cell behavior and a fluorescence resonance energy transfer (FRET) based molecular tension sensor for vinculin I demonstrated a spatial gradient of tension across vinculin in the direction of migration. To define this novel force-dependent role of vinculin in collective migration I took advantage of previously established shRNA based vinculin knock down Marin-Darby Canine Kidney (MDCK) epithelial cells.
The first part of my thesis comprises of my work demonstrating the mechanosensitive role of vinculin at AJ’s in collectively migrating cells. Using vinculin knockdown cells and vinculin mutants, which specifically disrupt vinculin’s ability to bind actin (VinI997A) or disrupt its ability to localize to AJs without affecting its localization at FAs (VinY822F), I establish a role of force across vinculin in E-cadherin internalization and clipping. Furthermore by measuring E-cadherin dynamics using fluorescence recovery after bleaching (FRAP) analysis I show that vinculin inhibition affects the turnover of E-cadherin at AJs. Together these data reveal a novel mechanosensitive role of vinculin in E-cadherin internalization and turnover in a migrating cell layer, which is contrary to the previously identified role of vinculin in potentiating E-cadherin junctions in a static monolayer.
For the last part of my thesis I designed a novel tension sensor to probe tension across N-cadherin (NTS). N-cadherin plays a critical role in cardiomyocytes, vascular smooth muscle cells, neurons and neural crest cells. Similar to E-cadherin, N-cadherin is also believed to bear tension and play a role in mechanotransduction pathways. To identify the role of tension across N-cadherin I designed a novel FRET-based molecular tension sensor for N-cadherin. I tested the ability of NTS to sense molecular tension in vascular smooth muscle cells, cardiomyocytes and cancer cells. Finally in collaboration with the Horwitz lab we have been able to show a role of tension across N-cadherin in synaptogenesis of neurons.
Resumo:
During oncogenesis, cancer cells go through metabolic reprogramming to maintain their high growth rates and adapt to changes in the microenvironment and the lack of essential nutrients. Several types of cancer are dependent on de novo fatty acid synthesis to sustain their growth rates by providing precursors to construct membranes and produce vital signaling lipids. Fatty acid synthase (FASN) catalyze the terminal step of de novo fatty acid synthesis and it is highly expressed in many types of cancers where it’s up-regulation is correlated with cancer aggressiveness and low therapeutic outcome. Many FASN inhibitors were developed and showed potent anticancer activity however, only one inhibitor advanced to early stage clinical trials with some dose limiting toxicities. Using a modified fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen, we identified HS-106, a thiophenopyrimiden FASN inhibitor that has anti-neoplastic activity against breast cancer in vitro and in vivo. HS-106 was able to inhibit both; purified human FASN activity and cellular fatty acid synthesis activity as evaluated by radioactive tracers incorporation into lipids experiments. In proliferation and apoptosis assays, HS-106 was able to block proliferation and induce apoptosis in several breast cancer cell lines. Several rescue experiment and global lipidome analysis were performed to probe the mechanism by which HS-106 induces apoptosis. HS-106 was found to induce several changes in lipids metabolism: (i) inhibit fatty acids synthesis. (ii) Inhibit fatty acids oxidation as indicated by the ability of inhibiting Malonyl CoA accumulation to block HS-106 induced apoptosis and the increase in the abundance of ceramides. (iii) Increase fatty acids uptake and neutral lipids formation as confirmed 14C Palmitate uptake assay and neutral lipids staining. (iv)Inhibit the formation of phospholipids by inhibiting de novo fatty acid synthesis and diverting exogenous fatty acids to neutral lipids. All of these events would lead to disruption in membranes structure and function. HS-106 was also tested in Lapatinib resistant cell lines and it was able to induce apoptosis and synergizes Lapatinib activity in these cell lines. This may be due the disruption of lipid rafts based on the observation that HS-106 reduces the expression of both HER2 and HER3. HS-106 was found to be well tolerated and bioavailable in mice with high elimination rate. HS-106 efficacy was tested in MMTV neu mouse model. Although did not significantly reduced tumor size (alone), HS-106 was able to double the median survival of the mice and showed potent antitumor activity when combined with Carboplatin. Similar results were obtained when same combinations and dosing schedule was used in C3Tag mouse model except for the inability of HS-106 affect mice survival.
From the above, HS-106 represent a novel FASN inhibitor that has anticancer activity both in vivo and in vitro. Being a chemically tractable molecule, the synthetic route to HS-106 is readily adaptable for the preparation of analogs that are similar in structure, suggesting that, the pharmacological properties of HS-106 can be improved.
Resumo:
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.
In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.
Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.
Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.