5 resultados para Canada. 1988 Jan. 2.

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pigeons and other animals soon learn to wait (pause) after food delivery on periodic-food schedules before resuming the food-rewarded response. Under most conditions the steady-state duration of the average waiting time, t, is a linear function of the typical interfood interval. We describe three experiments designed to explore the limits of this process. In all experiments, t was associated with one key color and the subsequent food delay, T, with another. In the first experiment, we compared the relation between t (waiting time) and T (food delay) under two conditions: when T was held constant, and when T was an inverse function of t. The pigeons could maximize the rate of food delivery under the first condition by setting t to a consistently short value; optimal behavior under the second condition required a linear relation with unit slope between t and T. Despite this difference in optimal policy, the pigeons in both cases showed the same linear relation, with slope less than one, between t and T. This result was confirmed in a second parametric experiment that added a third condition, in which T + t was held constant. Linear waiting appears to be an obligatory rule for pigeons. In a third experiment we arranged for a multiplicative relation between t and T (positive feedback), and produced either very short or very long waiting times as predicted by a quasi-dynamic model in which waiting time is strongly determined by the just-preceding food delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta 1- and beta 2-adrenergic receptors are two structurally related, but pharmacologically distinguishable, receptor subtypes, both of which activate adenylyl cyclase in a catecholamine-dependent manner through the guanine nucleotide-binding regulatory protein Gs. The receptors are approximately 50% identical in amino acid sequence and each is characterized by the presence of seven putative transmembrane domains. To elucidate the structural basis for the pharmacological distinctions between these two receptor subtypes, we constructed a series of chimeric beta 1/beta 2-adrenergic receptor genes and expressed them by injection of RNA into Xenopus laevis oocytes. The pharmacological properties of the expressed chimeric receptor proteins were assessed by radioligand binding and adenylyl cyclase assays utilizing subtype-selective agonists and antagonists. Our data indicate that transmembrane region IV is largely responsible for determining beta 1 vs. beta 2 properties with respect to agonist binding (relative affinities for epinephrine and norepinephrine). Transmembrane regions VI and VII play an important role in determining binding of beta 1 vs. beta 2 selective antagonists. However, a number of the other transmembrane regions also contribute, to a lesser extent, to the determination of beta-adrenergic receptor subtype specificity for agonists and antagonists. Thus, several of the membrane-spanning regions appear to be involved in the determination of receptor subtype specificity, presumably by formation of a ligand-binding pocket, with determinants for agonist and antagonist binding being distinguishable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alpha 2-adrenergic receptor subtype has been cloned from a human kidney cDNA library using the gene for the human platelet alpha 2-adrenergic receptor as a probe. The deduced amino acid sequence resembles the human platelet alpha 2-adrenergic receptor and is consistent with the structure of other members of the family of guanine nucleotide-binding protein-coupled receptors. The cDNA was expressed in a mammalian cell line (COS-7), and the alpha 2-adrenergic ligand [3H]rauwolscine was bound. Competition curve analysis with a variety of adrenergic ligands suggests that this cDNA clone represents the alpha 2B-adrenergic receptor. The gene for this receptor is on human chromosome 4, whereas the gene for the human platelet alpha 2-adrenergic receptor (alpha 2A) lies on chromosome 10. This ability to express the receptor in mammalian cells, free of other adrenergic receptor subtypes, should help in developing more selective alpha-adrenergic ligands.