4 resultados para CONDUCTING POLYMER-FILMS

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For efficient use of metal oxides, such as MnO(2) and RuO(2), in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO(2)), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO(2)/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO(2) (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode. Such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

© 2016, Springer-Verlag Berlin Heidelberg.Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.