4 resultados para COMPREHENSIVE HEALTHCARE
em Duke University
Resumo:
Clergy suffer from chronic disease rates that are higher than those of non-clergy. Health interventions for clergy are needed, and some exist, although none to date have been described in the literature. Life of Leaders is a clergy health intervention designed with particular attention to the lifestyle and beliefs of United Methodist clergy, directed by Methodist LeBonheur Healthcare Center of Excellence in Faith and Health. It consists of a two-day retreat of a comprehensive executive physical and leadership development process. Its guiding principles include a focus on personal assets, multi-disciplinary, integrated care, and an emphasis on the contexts of ministry for the poor and community leadership. Consistent with calls to intervene on clergy health across multiple ecological levels, Life of Leaders intervenes at the individual and interpersonal levels, with potential for congregational and religious denominational change. Persons wishing to improve the health of clergy may wish to implement Life of Leaders or borrow from its guiding principles.
Resumo:
We report a comprehensive study of the binary systems of the platinum-group metals with the transition metals, using high-throughput first-principles calculations. These computations predict stability of new compounds in 28 binary systems where no compounds have been reported in the literature experimentally and a few dozen of as-yet unreported compounds in additional systems. Our calculations also identify stable structures at compound compositions that have been previously reported without detailed structural data and indicate that some experimentally reported compounds may actually be unstable at low temperatures. With these results, we construct enhanced structure maps for the binary alloys of platinum-group metals. These maps are much more complete, systematic, and predictive than those based on empirical results alone.
Resumo:
Duke Medicine utilized interprofessional case conferences (ICCs) from 2008-2012 with the objective of modeling and facilitating development of teamwork skills among diverse health profession students, including physical therapy, physician assistant, medical doctor and nursing. The purpose of this publication was to describe the operational process used to develop and implement the ICCs and measure the success of the ICCs in order to shape future work. The ICCs were offered to develop skills and attitudes essential for participation in healthcare teams. Students were facilitated by faculty of different professions to conduct a comprehensive historical assessment of a standardized patient (SP), determine pertinent physical and lab assessments to undertake, and develop and share a comprehensive management plan. Cases included patient problems that were authentic and relevant to each professional student in attendance. The main barriers to implementation are outlined and the focus on the process of working together is highlighted. Evaluation showed high satisfaction rates among participants and the outcomes from these experiences are presented. The limitations of these results are discussed and recommendations for future assessment are emphasized. The ICCs demonstrated that students will come together voluntarily to learn in teams, even at a research-focused institution, and express benefit from the collaborative exercise.
Resumo:
BACKGROUND: In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. DEVELOPMENT AND TESTING OF THE ONTOLOGY: Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. RESULTS AND SIGNIFICANCE: Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.