2 resultados para COARSE-GRAINED SIMULATIONS
em Duke University
Resumo:
MOTIVATION: Although many network inference algorithms have been presented in the bioinformatics literature, no suitable approach has been formulated for evaluating their effectiveness at recovering models of complex biological systems from limited data. To overcome this limitation, we propose an approach to evaluate network inference algorithms according to their ability to recover a complex functional network from biologically reasonable simulated data. RESULTS: We designed a simulator to generate data representing a complex biological system at multiple levels of organization: behaviour, neural anatomy, brain electrophysiology, and gene expression of songbirds. About 90% of the simulated variables are unregulated by other variables in the system and are included simply as distracters. We sampled the simulated data at intervals as one would sample from a biological system in practice, and then used the sampled data to evaluate the effectiveness of an algorithm we developed for functional network inference. We found that our algorithm is highly effective at recovering the functional network structure of the simulated system-including the irrelevance of unregulated variables-from sampled data alone. To assess the reproducibility of these results, we tested our inference algorithm on 50 separately simulated sets of data and it consistently recovered almost perfectly the complex functional network structure underlying the simulated data. To our knowledge, this is the first approach for evaluating the effectiveness of functional network inference algorithms at recovering models from limited data. Our simulation approach also enables researchers a priori to design experiments and data-collection protocols that are amenable to functional network inference.
Resumo:
The experiments in the Cole and Moore article in the first issue of the Biophysical Journal provided the first independent experimental confirmation of the Hodgkin-Huxley (HH) equations. A log-log plot of the K current versus time showed that raising the HH variable n to the sixth power provided the best fit to the data. Subsequent simulations using n(6) and setting the resting potential at the in vivo value simplifies the HH equations by eliminating the leakage term. Our article also reported that the K current in response to a depolarizing step to ENa was delayed if the step was preceded by a hyperpolarization. While the interpretation of this phenomenon in the article was flawed, subsequent simulations show that the effect completely arises from the original HH equations.