4 resultados para CHROMATOGRAPHY-MASS SPECTROMETRY

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.

The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.

In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.

I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.

Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphomas comprise a diverse group of malignancies derived from immune cells. High throughput sequencing has recently emerged as a powerful and versatile method for analysis of the cancer genome and transcriptome. As these data continue to emerge, the crucial work lies in sorting through the wealth of information to hone in on the critical aspects that will give us a better understanding of biology and new insight for how to treat disease. Finding the important signals within these large data sets is one of the major challenges of next generation sequencing.

In this dissertation, I have developed several complementary strategies to describe the genetic underpinnings of lymphomas. I begin with developing a better method for RNA sequencing that enables strand-specific total RNA sequencing and alternative splicing profiling in the same analysis. I then combine this RNA sequencing technique with whole exome sequencing to better understand the global landscape of aberrations in these diseases. Finally, I use traditional cell and molecular biology techniques to define the consequences of major genetic alterations in lymphoma.

Through this analysis, I find recurrent silencing mutations in the G alpha binding protein GNA13 and associated focal adhesion proteins. I aim to describe how loss-of-function mutations in GNA13 can be oncogenic in the context of germinal center B cell biology. Using in vitro techniques including liquid chromatography-mass spectrometry and knockdown and overexpression of genes in B cell lymphoma cell lines, I determine protein binding partners and downstream effectors of GNA13. I also develop a transgenic mouse model to study the role of GNA13 in the germinal center in vivo to determine effects of GNA13 deletion on germinal center structure and cell migration.

Thus, I have developed complementary approaches that span the spectrum from discovery to context-dependent gene models that afford a better understanding of the biological function of aberrant events and ultimately result in a better understanding of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Pain symptoms are common among Iraq/Afghanistan-era veterans, many of whom continue to experience persistent pain symptoms despite multiple pharmacological interventions. Preclinical data suggest that neurosteroids such as allopregnanolone demonstrate pronounced analgesic properties, and thus represent logical biomarker candidates and therapeutic targets for pain. Allopregnanolone is also a positive GABAA receptor modulator with anxiolytic, anticonvulsant, and neuroprotective actions in rodent models. We previously reported inverse associations between serum allopregnanolone levels and self-reported pain symptom severity in a pilot study of 82 male veterans. METHODS: The current study investigates allopregnanolone levels in a larger cohort of 485 male Iraq/Afghanistan-era veterans to attempt to replicate these initial findings. Pain symptoms were assessed by items from the Symptom Checklist-90-R (SCL-90-R) querying headache, chest pain, muscle soreness, and low back pain over the past 7 days. Allopregnanolone levels were quantified by gas chromatography/mass spectrometry. RESULTS: Associations between pain ratings and allopregnanolone levels were examined with Poisson regression analyses, controlling for age and smoking. Bivariate nonparametric Mann–Whitney analyses examining allopregnanolone levels across high and low levels of pain were also conducted. Allopregnanolone levels were inversely associated with muscle soreness [P = 0.0028], chest pain [P = 0.032], and aggregate total pain (sum of all four pain items) [P = 0.0001]. In the bivariate analyses, allopregnanolone levels were lower in the group reporting high levels of muscle soreness [P = 0.001]. CONCLUSIONS: These findings are generally consistent with our prior pilot study and suggest that allopregnanolone may function as an endogenous analgesic. Thus, exogenous supplementation with allopregnanolone could have therapeutic potential. The characterization of neurosteroid profiles may also have biomarker utility.