9 resultados para Burden of care

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates whether higher input use per stay in the hospital (treatment intensity) and longer length of stay improve outcomes of care. We allow for endogeneity of intensity and length of stay by estimating a quasi-maximum-likelihood discrete factor model, where the distribution of the unmeasured variable is modeled using a discrete distribution. Data on elderly persons come from several waves of the National Long-Term Care Survey merged with Medicare claims data for 1984-1995 and the National Death Index. We find that higher intensity improves patient survival and some dimensions of functional status among those who survive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acute febrile respiratory illnesses, including influenza, account for a large proportion of ambulatory care visits worldwide. In the developed world, these encounters commonly result in unwarranted antibiotic prescriptions; data from more resource-limited settings are lacking. The purpose of this study was to describe the epidemiology of influenza among outpatients in southern Sri Lanka and to determine if access to rapid influenza test results was associated with decreased antibiotic prescriptions.

Methods: In this pretest- posttest study, consecutive patients presenting from March 2013- April 2014 to the Outpatient Department of the largest tertiary care hospital in southern Sri Lanka were surveyed for influenza-like illness (ILI). Patients meeting World Health Organization criteria for ILI-- acute onset of fever ≥38.0°C and cough in the prior 7 days--were enrolled. Consenting patients were administered a structured questionnaire, physical examination, and nasal/nasopharyngeal sampling. Rapid influenza A/B testing (Veritor System, Becton Dickinson) was performed on all patients, but test results were only released to patients and clinicians during the second phase of the study (December 2013- April 2014).

Results: We enrolled 397 patients with ILI, with 217 (54.7%) adults ≥12 years and 188 (47.4%) females. A total of 179 (45.8%) tested positive for influenza by rapid testing, with April- July 2013 and September- November 2013 being the periods with the highest proportion of ILI due to influenza. A total of 310 (78.1%) patients with ILI received a prescription for an antibiotic from their outpatient provider. The proportion of patients prescribed antibiotics decreased from 81.4% in the first phase to 66.3% in the second phase (p=.005); among rapid influenza-positive patients, antibiotic prescriptions decreased from 83.7% in the first phase to 56.3% in the second phase (p=.001). On multivariable analysis, having a positive rapid influenza test available to clinicians was associated with decreased antibiotic use (OR 0.20, 95% CI 0.05- 0.82).

Conclusions: Influenza virus accounted for almost 50% of acute febrile respiratory illness in this study, but most patients were prescribed antibiotics. Providing rapid influenza test results to clinicians was associated with fewer antibiotic prescriptions, but overall prescription of antibiotics remained high. In this developing country setting, a multi-faceted approach that includes improved access to rapid diagnostic tests may help decrease antibiotic use and combat antimicrobial resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histopathology is the clinical standard for tissue diagnosis. However, histopathology has several limitations including that it requires tissue processing, which can take 30 minutes or more, and requires a highly trained pathologist to diagnose the tissue. Additionally, the diagnosis is qualitative, and the lack of quantitation leads to possible observer-specific diagnosis. Taken together, it is difficult to diagnose tissue at the point of care using histopathology.

Several clinical situations could benefit from more rapid and automated histological processing, which could reduce the time and the number of steps required between obtaining a fresh tissue specimen and rendering a diagnosis. For example, there is need for rapid detection of residual cancer on the surface of tumor resection specimens during excisional surgeries, which is known as intraoperative tumor margin assessment. Additionally, rapid assessment of biopsy specimens at the point-of-care could enable clinicians to confirm that a suspicious lesion is successfully sampled, thus preventing an unnecessary repeat biopsy procedure. Rapid and low cost histological processing could also be potentially useful in settings lacking the human resources and equipment necessary to perform standard histologic assessment. Lastly, automated interpretation of tissue samples could potentially reduce inter-observer error, particularly in the diagnosis of borderline lesions.

To address these needs, high quality microscopic images of the tissue must be obtained in rapid timeframes, in order for a pathologic assessment to be useful for guiding the intervention. Optical microscopy is a powerful technique to obtain high-resolution images of tissue morphology in real-time at the point of care, without the need for tissue processing. In particular, a number of groups have combined fluorescence microscopy with vital fluorescent stains to visualize micro-anatomical features of thick (i.e. unsectioned or unprocessed) tissue. However, robust methods for segmentation and quantitative analysis of heterogeneous images are essential to enable automated diagnosis. Thus, the goal of this work was to obtain high resolution imaging of tissue morphology through employing fluorescence microscopy and vital fluorescent stains and to develop a quantitative strategy to segment and quantify tissue features in heterogeneous images, such as nuclei and the surrounding stroma, which will enable automated diagnosis of thick tissues.

To achieve these goals, three specific aims were proposed. The first aim was to develop an image processing method that can differentiate nuclei from background tissue heterogeneity and enable automated diagnosis of thick tissue at the point of care. A computational technique called sparse component analysis (SCA) was adapted to isolate features of interest, such as nuclei, from the background. SCA has been used previously in the image processing community for image compression, enhancement, and restoration, but has never been applied to separate distinct tissue types in a heterogeneous image. In combination with a high resolution fluorescence microendoscope (HRME) and a contrast agent acriflavine, the utility of this technique was demonstrated through imaging preclinical sarcoma tumor margins. Acriflavine localizes to the nuclei of cells where it reversibly associates with RNA and DNA. Additionally, acriflavine shows some affinity for collagen and muscle. SCA was adapted to isolate acriflavine positive features or APFs (which correspond to RNA and DNA) from background tissue heterogeneity. The circle transform (CT) was applied to the SCA output to quantify the size and density of overlapping APFs. The sensitivity of the SCA+CT approach to variations in APF size, density and background heterogeneity was demonstrated through simulations. Specifically, SCA+CT achieved the lowest errors for higher contrast ratios and larger APF sizes. When applied to tissue images of excised sarcoma margins, SCA+CT correctly isolated APFs and showed consistently increased density in tumor and tumor + muscle images compared to images containing muscle. Next, variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was further tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. The results indicate that SCA+CT can accurately delineate APFs in heterogeneous tissue, which is essential to enable automated and rapid surveillance of tissue pathology.

Two primary challenges were identified in the work in aim 1. First, while SCA can be used to isolate features, such as APFs, from heterogeneous images, its performance is limited by the contrast between APFs and the background. Second, while it is feasible to create mosaics by scanning a sarcoma tumor bed in a mouse, which is on the order of 3-7 mm in any one dimension, it is not feasible to evaluate an entire human surgical margin. Thus, improvements to the microscopic imaging system were made to (1) improve image contrast through rejecting out-of-focus background fluorescence and to (2) increase the field of view (FOV) while maintaining the sub-cellular resolution needed for delineation of nuclei. To address these challenges, a technique called structured illumination microscopy (SIM) was employed in which the entire FOV is illuminated with a defined spatial pattern rather than scanning a focal spot, such as in confocal microscopy.

Thus, the second aim was to improve image contrast and increase the FOV through employing wide-field, non-contact structured illumination microscopy and optimize the segmentation algorithm for new imaging modality. Both image contrast and FOV were increased through the development of a wide-field fluorescence SIM system. Clear improvement in image contrast was seen in structured illumination images compared to uniform illumination images. Additionally, the FOV is over 13X larger than the fluorescence microendoscope used in aim 1. Initial segmentation results of SIM images revealed that SCA is unable to segment large numbers of APFs in the tumor images. Because the FOV of the SIM system is over 13X larger than the FOV of the fluorescence microendoscope, dense collections of APFs commonly seen in tumor images could no longer be sparsely represented, and the fundamental sparsity assumption associated with SCA was no longer met. Thus, an algorithm called maximally stable extremal regions (MSER) was investigated as an alternative approach for APF segmentation in SIM images. MSER was able to accurately segment large numbers of APFs in SIM images of tumor tissue. In addition to optimizing MSER for SIM image segmentation, an optimal frequency of the illumination pattern used in SIM was carefully selected because the image signal to noise ratio (SNR) is dependent on the grid frequency. A grid frequency of 31.7 mm-1 led to the highest SNR and lowest percent error associated with MSER segmentation.

Once MSER was optimized for SIM image segmentation and the optimal grid frequency was selected, a quantitative model was developed to diagnose mouse sarcoma tumor margins that were imaged ex vivo with SIM. Tumor margins were stained with acridine orange (AO) in aim 2 because AO was found to stain the sarcoma tissue more brightly than acriflavine. Both acriflavine and AO are intravital dyes, which have been shown to stain nuclei, skeletal muscle, and collagenous stroma. A tissue-type classification model was developed to differentiate localized regions (75x75 µm) of tumor from skeletal muscle and adipose tissue based on the MSER segmentation output. Specifically, a logistic regression model was used to classify each localized region. The logistic regression model yielded an output in terms of probability (0-100%) that tumor was located within each 75x75 µm region. The model performance was tested using a receiver operator characteristic (ROC) curve analysis that revealed 77% sensitivity and 81% specificity. For margin classification, the whole margin image was divided into localized regions and this tissue-type classification model was applied. In a subset of 6 margins (3 negative, 3 positive), it was shown that with a tumor probability threshold of 50%, 8% of all regions from negative margins exceeded this threshold, while over 17% of all regions exceeded the threshold in the positive margins. Thus, 8% of regions in negative margins were considered false positives. These false positive regions are likely due to the high density of APFs present in normal tissues, which clearly demonstrates a challenge in implementing this automatic algorithm based on AO staining alone.

Thus, the third aim was to improve the specificity of the diagnostic model through leveraging other sources of contrast. Modifications were made to the SIM system to enable fluorescence imaging at a variety of wavelengths. Specifically, the SIM system was modified to enabling imaging of red fluorescent protein (RFP) expressing sarcomas, which were used to delineate the location of tumor cells within each image. Initial analysis of AO stained panels confirmed that there was room for improvement in tumor detection, particularly in regards to false positive regions that were negative for RFP. One approach for improving the specificity of the diagnostic model was to investigate using a fluorophore that was more specific to staining tumor. Specifically, tetracycline was selected because it appeared to specifically stain freshly excised tumor tissue in a matter of minutes, and was non-toxic and stable in solution. Results indicated that tetracycline staining has promise for increasing the specificity of tumor detection in SIM images of a preclinical sarcoma model and further investigation is warranted.

In conclusion, this work presents the development of a combination of tools that is capable of automated segmentation and quantification of micro-anatomical images of thick tissue. When compared to the fluorescence microendoscope, wide-field multispectral fluorescence SIM imaging provided improved image contrast, a larger FOV with comparable resolution, and the ability to image a variety of fluorophores. MSER was an appropriate and rapid approach to segment dense collections of APFs from wide-field SIM images. Variables that reflect the morphology of the tissue, such as the density, size, and shape of nuclei and nucleoli, can be used to automatically diagnose SIM images. The clinical utility of SIM imaging and MSER segmentation to detect microscopic residual disease has been demonstrated by imaging excised preclinical sarcoma margins. Ultimately, this work demonstrates that fluorescence imaging of tissue micro-anatomy combined with a specialized algorithm for delineation and quantification of features is a means for rapid, non-destructive and automated detection of microscopic disease, which could improve cancer management in a variety of clinical scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study sought to determine burnout prevalence and factors associated with burnout in internal medicine residents after introduction of the 2011 ACGME duty hour rules. Burnout was evaluated using an anonymized, abbreviated version of the Maslach Burnout Inventory. Surveys were collected biweekly for 48 weeks during the 2013-2014 academic year. Burnout severity was compared across subgroups and time. A score of 3 or higher signified burnout. Overall, 944 of 3936 (24%) surveys were completed. The mean burnout score across all surveys was 2.8. Categorical residents had higher burnout severity than noncategorical residents (2.9 vs 2.7, P = .005). Postgraduate year 2 residents had the highest burnout severity by year (3.1, P < .001). Residents on inpatient rotations had higher burnout severity than residents on outpatient or consultation rotations (3.1 vs 2.2 vs 2.2, P < .001). Night float rotations had the highest severity (3.8). Burnout remains a significant problem even with recent duty hour modifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background.  Cytomegalovirus (CMV) is a common cause of birth defects and hearing loss in infants and opportunistic infections in the immunocompromised. Previous studies have found higher CMV seroprevalence rates among minorities and among persons with lower socioeconomic status. No studies have investigated the geographic distribution of CMV and its relationship to age, race, and poverty in the community. Methods.  We identified patients from 6 North Carolina counties who were tested in the Duke University Health System for CMV immunoglobulin G. We performed spatial statistical analyses to analyze the distributions of seropositive and seronegative individuals. Results.  Of 1884 subjects, 90% were either white or African American. Cytomegalovirus seropositivity was significantly more common among African Americans (73% vs 42%; odds ratio, 3.31; 95% confidence interval, 2.7-4.1), and this disparity persisted across the life span. We identified clusters of high and low CMV odds, both of which were largely explained by race. Clusters of high CMV odds were found in communities with high proportions of African Americans. Conclusions.  Cytomegalovirus seropositivity is geographically clustered, and its distribution is strongly determined by a community's racial composition. African American communities have high prevalence rates of CMV infection, and there may be a disparate burden of CMV-associated morbidity in these communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Measurement of glycated hemoglobin (HbA1c) is an important indicator of glucose control over time. Point-of-care (POC) devices allow for rapid and convenient measurement of HbA1c, greatly facilitating diabetes care. We assessed two POC analyzers in the Peruvian Amazon where laboratory-based HbA1c testing is not available.

Methods: Venous blood samples were collected from 203 individuals from six different Amazonian communities with a wide range of HbA1c, 4.4-9.0% (25-75 mmol/mol). The results of the Afinion AS100 and the DCA Vantage POC analyzers were compared to a central laboratory using the Premier Hb9210 high-performance liquid chromatography (HPLC) method. Imprecision was assessed by performing 14 successive tests of a single blood sample.

Results: The correlation coefficient r for POC and HPLC results was 0.92 for the Afinion and 0.93 for the DCA Vantage. The Afinion generated higher HbA1c results than the HPLC (mean difference = +0.56% [+6 mmol/mol]; p < 0.001), as did the DCA Vantage (mean difference = +0.32% [4 mmol/mol]). The bias observed between POC and HPLC did not vary by HbA1c level for the DCA Vantage (p = 0.190), but it did for the Afinion (p < 0.001). Imprecision results were: CV = 1.75% for the Afinion, CV = 4.01% for the DCA Vantage. Sensitivity was 100% for both devices, specificity was 48.3% for the Afinion and 85.1% for the DCA Vantage, positive predictive value (PPV) was 14.4% for the Afinion and 34.9% for the DCA Vantage, and negative predictive value (NPV) for both devices was 100%. The area under the receiver operating characteristic (ROC) curve was 0.966 for the Afinion and 0.982 for the DCA Vantage. Agreement between HPLC and POC in classifying diabetes and prediabetes status was slight for the Afinion (Kappa = 0.12) and significantly different (McNemar’s statistic = 89; p < 0.001), and moderate for the DCA Vantage (Kappa = 0.45) and significantly different (McNemar’s statistic = 28; p < 0.001).

Conclusions: Despite significant variation of HbA1c results between the Afinion and DCA Vantage analyzers compared to HPLC, we conclude that both analyzers should be considered in health clinics in the Peruvian Amazon for therapeutic adjustments if healthcare workers are aware of the differences relative to testing in a clinical laboratory. However, imprecision and bias were not low enough to recommend either device for screening purposes, and the local prevalence of anemia and malaria may interfere with diagnostic determinations for a substantial portion of the population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the burden of non-communicable diseases increases worldwide, it is imperative that health systems adopt delivery approaches that will enable them to provide accessible, high-quality, and low-cost care to patients that need consistent management of their lifelong conditions. This is especially true in low- and middle-income country settings, such as India, where the disease burden is high and the health sector resources to address it are limited. The subscription-based, managed care model that SughaVazhvu Healthcare—a non-profit social enterprise operating in rural Thanjavur, Tamil Nadu—has deployed demonstrates potential for ensuring continuity of care among chronic care patients in resource-strained areas. However, its effectiveness and sustainability will depend on its ability to positively impact patient health status and patient satisfaction with the care management they are receiving. Therefore, this study is not only a program appraisal to aid operational quality improvement of the SughaVazhvu Healthcare model, but also an attempt to identify the factors that affect patient satisfaction among individuals with chronic conditions actively availing services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The National Comprehensive Cancer Network and the American Society of Clinical Oncology have established guidelines for the treatment and surveillance of colorectal cancer (CRC), respectively. Considering these guidelines, an accurate and efficient method is needed to measure receipt of care. METHODS: The accuracy and completeness of Veterans Health Administration (VA) administrative data were assessed by comparing them with data manually abstracted during the Colorectal Cancer Care Collaborative (C4) quality improvement initiative for 618 patients with stage I-III CRC. RESULTS: The VA administrative data contained gender, marital, and birth information for all patients but race information was missing for 62.1% of patients. The percent agreement for demographic variables ranged from 98.1-100%. The kappa statistic for receipt of treatments ranged from 0.21 to 0.60 and there was a 96.9% agreement for the date of surgical resection. The percentage of post-diagnosis surveillance events in C4 also in VA administrative data were 76.0% for colonoscopy, 84.6% for physician visit, and 26.3% for carcinoembryonic antigen (CEA) test. CONCLUSIONS: VA administrative data are accurate and complete for non-race demographic variables, receipt of CRC treatment, colonoscopy, and physician visits; but alternative data sources may be necessary to capture patient race and receipt of CEA tests.