3 resultados para Breath Analyzers.

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Measurement of glycated hemoglobin (HbA1c) is an important indicator of glucose control over time. Point-of-care (POC) devices allow for rapid and convenient measurement of HbA1c, greatly facilitating diabetes care. We assessed two POC analyzers in the Peruvian Amazon where laboratory-based HbA1c testing is not available.

Methods: Venous blood samples were collected from 203 individuals from six different Amazonian communities with a wide range of HbA1c, 4.4-9.0% (25-75 mmol/mol). The results of the Afinion AS100 and the DCA Vantage POC analyzers were compared to a central laboratory using the Premier Hb9210 high-performance liquid chromatography (HPLC) method. Imprecision was assessed by performing 14 successive tests of a single blood sample.

Results: The correlation coefficient r for POC and HPLC results was 0.92 for the Afinion and 0.93 for the DCA Vantage. The Afinion generated higher HbA1c results than the HPLC (mean difference = +0.56% [+6 mmol/mol]; p < 0.001), as did the DCA Vantage (mean difference = +0.32% [4 mmol/mol]). The bias observed between POC and HPLC did not vary by HbA1c level for the DCA Vantage (p = 0.190), but it did for the Afinion (p < 0.001). Imprecision results were: CV = 1.75% for the Afinion, CV = 4.01% for the DCA Vantage. Sensitivity was 100% for both devices, specificity was 48.3% for the Afinion and 85.1% for the DCA Vantage, positive predictive value (PPV) was 14.4% for the Afinion and 34.9% for the DCA Vantage, and negative predictive value (NPV) for both devices was 100%. The area under the receiver operating characteristic (ROC) curve was 0.966 for the Afinion and 0.982 for the DCA Vantage. Agreement between HPLC and POC in classifying diabetes and prediabetes status was slight for the Afinion (Kappa = 0.12) and significantly different (McNemar’s statistic = 89; p < 0.001), and moderate for the DCA Vantage (Kappa = 0.45) and significantly different (McNemar’s statistic = 28; p < 0.001).

Conclusions: Despite significant variation of HbA1c results between the Afinion and DCA Vantage analyzers compared to HPLC, we conclude that both analyzers should be considered in health clinics in the Peruvian Amazon for therapeutic adjustments if healthcare workers are aware of the differences relative to testing in a clinical laboratory. However, imprecision and bias were not low enough to recommend either device for screening purposes, and the local prevalence of anemia and malaria may interfere with diagnostic determinations for a substantial portion of the population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. METHODS AND PRINCIPAL FINDINGS: Here we exploit the solubility, high magnetic resonance (MR) signal intensity, and large chemical shift of hyperpolarized (HP) (129)Xe to probe the regional uptake of alveolar gases by directly imaging HP (129)Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP (129)Xe magnetization is rapidly replenished by diffusive exchange with alveolar (129)Xe. The dissolved HP (129)Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. CONCLUSIONS: The features observed in dissolved-phase (129)Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios), higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP (129)Xe imaging reports on pulmonary function at a fundamental level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiotherapy is commonly used to treat lung cancer. However, radiation induced damage to lung tissue is a major limiting factor to its use. To minimize normal tissue lung toxicity from conformal radiotherapy treatment planning, we investigated the use of Perfluoropropane(PFP)-enhanced MR imaging to assess and guide the sparing of functioning lung. Fluorine Enhanced MRI using Perfluoropropane(PFP) is a dynamic multi-breath steady state technique enabling quantitative and qualitative assessments of lung function(1).

Imaging data was obtained from studies previously acquired in the Duke Image Analysis Laboratory. All studies were approved by the Duke IRB. The data was de-identified for this project, which was also approved by the Duke IRB. Subjects performed several breath-holds at total lung capacity(TLC) interspersed with multiple tidal breaths(TB) of Perfluoropropane(PFP)/oxygen mixture. Additive wash-in intensity images were created through the summation of the wash-in phase breath-holds. Additionally, model based fitting was utilized to create parametric images of lung function(1).

Varian Eclipse treatment planning software was used for putative treatment planning. For each subject two plans were made, a standard plan, with no regional functional lung information considered other than current standard models. Another was created using functional information to spare functional lung while maintaining dose to the target lesion. Plans were optimized to a prescription dose of 60 Gy to the target over the course of 30 fractions.

A decrease in dose to functioning lung was observed when utilizing this functional information compared to the standard plan for all five subjects. PFP-enhanced MR imaging is a feasible method to assess ventilatory lung function and we have shown how this can be incorporated into treatment planning to potentially decrease the dose to normal tissue.