4 resultados para Body Image

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Body image (BI) and body satisfaction may be important in understanding weight loss behaviors, particularly during the postpartum period. We assessed these constructs among African American and white overweight postpartum women. METHODS: The sample included 162 women (73 African American and 89 white) in the intervention arm 6 months into the Active Mothers Postpartum (AMP) Study, a nutritional and physical activity weight loss intervention. BIs, self-reported using the Stunkard figure rating scale, were compared assessing mean values by race. Body satisfaction was measured using body discrepancy (BD), calculated as perceived current image minus ideal image (BD<0: desire to be heavier; BD>0: desire to be lighter). BD was assessed by race for: BD(Ideal) (current image minus the ideal image) and BD(Ideal Mother) (current image minus ideal mother image). RESULTS: Compared with white women, African American women were younger and were less likely to report being married, having any college education, or residing in households with annual incomes >$30,000 (all p < 0.01). They also had a higher mean body mass index (BMI) (p = 0.04), although perceived current BI did not differ by race (p = 0.21). African Americans had higher mean ideal (p = 0.07) and ideal mother (p = 0.001) BIs compared with whites. African Americans' mean BDs (adjusting for age, BMI, education, income, marital status, and interaction terms) were significantly lower than those of whites, indicating greater body satisfaction among African Americans (BD(Ideal): 1.7 vs. 2.3, p = 0.005; BD(Ideal Mother): 1.1 vs. 1.8, p = 0.0002). CONCLUSIONS: Racial differences exist in postpartum weight, ideal images, and body satisfaction. Healthcare providers should consider tailored messaging that accounts for these racially different perceptions and factors when designing weight loss programs for overweight mothers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a nationally representative sample of 142 783 middle school (13-15 years old) and high school (16-18 years old) students in South Korea, this study examined whether (1) overweight and obesity are more likely to be associated with lower self-reported school performance; (2) overweight and obese students are more likely to enrol in a vocational high school as opposed to a general high school; (3) the association between obesity and poorer self-reported school performance is mediated through body image stress and health status. We found that excess weight was negatively associated with self-reported school performance among middle and general high school students, and that obese students had a higher probability of being enrolled in a vocational over a general high school. We did not find strong evidence on the mediating role of body image stress and health status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Curcumin is a natural product that is often explored by patients with cancer. Weight loss due to fat and muscle depletion is a hallmark of pancreatic cancer and is associated with worse outcomes. Studies of curcumin's effects on muscularity show conflicting results in animal models. METHODS AND RESULTS: Retrospective matched 1:2 case-control study to evaluate the effects of curcumin on body composition (determined by computerized tomography) of 66 patients with advanced pancreatic cancer (22 treated,44 controls). Average age (SEM) was 63(1.8) years, 30/66(45%) women, median number of prior therapies was 2, median (IQR) time from advanced pancreatic cancer diagnosis to baseline image was 7(2-13.5) months (p>0.2, all variables). All patients lost weight (3.3% and 1.3%, treated vs. control, p=0.13). Treated patients lost more muscle (median [IQR] percent change -4.8[-9.1,-0.1] vs. -0.05%[-4.2, 2.6] in controls,p<0.001) and fat (median [IQR] percent change -6.8%[-15,-0.6] vs. -4.0%[-7.6, 1.3] in controls,p=0.04). Subcutaneous fat was more affected in the treated patients. Sarcopenic patients treated with curcumin(n=15) had survival of 169(115-223) days vs. 299(229-369) sarcopenic controls(p=0.024). No survival difference was found amongst non-sarcopenic patients. CONCLUSIONS: Patients with advanced pancreatic cancer treated with curcumin showed significantly greater loss of subcutaneous fat and muscle than matched untreated controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.