3 resultados para Blood sugar self monitoring

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explores patients’ needs in rural Thanjavur, southern India through understanding how people with diabetes choose providers and perceive care-seeking experience. To measure perception, the study surveyed people regarding six common barriers to care-seeking behavior, selected from both literature and local expert interview. Ninety-one percent of the sampled population goes to public or private allopathic providers out of the six presented providers. The low socioeconomic group and people with more complications or comorbidities are more likely to go to private allopathic providers. What is more, there is no difference between public and private allopathic providers in patients’ perception of care except for perceived cost. Positive perceptions in both providers are very common except for perceptions in blood-sugar management, distance to facilities, and cost of care. Sixty-six percent of patients perceived their blood-sugar control to fluctuate or have no change versus improved control. Twenty-seven percent of patients perceived the distance to facilities as unreasonable, and sixty-two percent of patients perceived the cost as high for them. The results suggest that cost may affect low socioeconomic people’s choice of care significantly. However, for people in middle and higher socioeconomic groups, cost does not appear to be a major factor. For qualitative text analyses, physician’s behavior and reputation emerge as themes, which require further studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.

By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.

To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.

In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful use of helminths as therapeutic agents to resolve inflammatory disease was first recorded 40 years ago. Subsequent work in animal models and in humans has demonstrated that the organisms might effectively treat a wide range of inflammatory diseases, including allergies, autoimmune disorders and inflammation-associated neuropsychiatric disorders. However, available information regarding the therapeutic uses and effects of helminths in humans is limited. This study probes the practices and experiences of individuals 'self-treating' with helminths through the eyes of their physicians. Five physicians monitoring more than 700 self-treating patients were interviewed. The results strongly support previous indications that helminth therapy can effectively treat a wide range of allergies, autoimmune conditions and neuropsychiatric disorders, such as major depression and anxiety disorders. Approximately 57% of the self-treating patients observed by physicians in the study had autism. Physicians reported that the majority of patients with autism and inflammation-associated co-morbidities responded favourably to therapy with either of the two most popular organisms currently used by self-treaters, Hymenolepis diminuta and Trichuris suis. However, approximately 1% of paediatric patients experienced severe gastrointestinal pains with the use of H. diminuta, although the symptoms were resolved with an anti-helminthic drug. Further, exposure to helminths apparently did not affect the impaired comprehension of social situations that is the hallmark of autism. These observations point toward potential starting points for clinical trials, and provide further support for the importance of such trials and for concerted efforts aimed at probing the potential of helminths, and perhaps other biologicals, for therapeutic use.