3 resultados para Blindness monocular

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Because most developing countries lack sufficient resources and infrastructure to conduct population-based studies on childhood blindness, it can be difficult to obtain epidemiologically reliable data available for planning public health strategies to effectively address the major determinants of childhood blindness. The major etiologies of blindness can differ regionally and intra-regionally. The objective of this retrospective study was to determine (1) the major causes of childhood blindness (BL) and severe visual impairment (SVI) in students who attend Wa Methodist School for the Blind in Upper West Region, North Ghana, and (2) any potential temporal trends in the causes of blindness for this region.

Methods: In this retrospective study, demographic data and clinical information from an eye screening at Wa Methodist School for the Blind were coded according to the World Health Organization/Prevention of Blindness standardized reporting methodology. Causes of BL and SVI were categorized anatomically and etiologically. We determined the major causes of BL/SVI over time using information provided about the age at onset of visual loss for each student.

Results: The major anatomical causes of BL/SVI among the 190 students screened were corneal opacity and phthisis bulbi (n=28, 15%), optic atrophy (n=23, 13%), glaucoma (n=18, 9%), microphthalmos (n=18, 9%), and cataract (n=18, 9%). Within the first year of life, students became blind mainly due to whole globe causes (n=23, 26%), cataract (n=15, 17%), and optic atrophy (n=11, 13%). Those who became blind after age one year had whole globe causes (n=26, 26%), corneal opacity (n=24, 24%), and optic atrophy (n=13, 13%).

Conclusion: At the Wa Methodist School for the Blind, the major anatomical causes of BL/SVI were corneal opacity and phthisis bulbi. About half of all students became blind within the first year of life, and were disproportionately affected by cataract and retinal causes in comparison to the other students who became blind after age one year. While research in blind schools has a number of implicit disadvantages and limitations, considering the temporal trends and other epidemiological factors of blindness may increase the usefulness and/or implications of the data that come from blind school studies in order to improve screening methods for newborns in hospitals and primary care centers, and to help tailor preventative and treatment programs to reduce avoidable childhood blindness in neonates and schoolchildren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opioids are efficacious and cost-effective analgesics, but tolerance limits their effectiveness. This paper does not present any new clinical or experimental data but demonstrates that there exist ascending sensory pathways that contain few opioid receptors. These pathways are located by brain PET scans and spinal cord autoradiography. These nonopioid ascending pathways include portions of the ventral spinal thalamic tract originating in Rexed layers VI-VIII, thalamocortical fibers that project to the primary somatosensory cortex (S1), and possibly a midline dorsal column visceral pathway. One hypothesis is that opioid tolerance and opioid-induced hyperalgesia may be caused by homeostatic upregulation during opioid exposure of nonopioid-dependent ascending pain pathways. Upregulation of sensory pathways is not a new concept and has been demonstrated in individuals impaired with deafness or blindness. A second hypothesis is that adjuvant nonopioid therapies may inhibit ascending nonopioid-dependent pathways and support the clinical observations that monotherapy with opioids usually fails. The uniqueness of opioid tolerance compared to tolerance associated with other central nervous system medications and lack of tolerance from excess hormone production is discussed. Experimental work that could prove or disprove the concepts as well as flaws in the concepts is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, includingChlamydia trachomatis Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogenC. trachomatislacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against aC. trachomatisgenomic library using a conditional-lethallpxHmutantEscherichia colistrain, we have identified an open reading frame (Ct461, renamedlpxG) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function inE. coliand catalyzes the conversion of UDP-DAGn to lipid Xin vitro LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity ofC. trachomatis, validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools forC. trachomatisand should be broadly applicable for the functional characterization of other essentialC. trachomatisgenes.IMPORTANCEChlamydia trachomatisis a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of manyChlamydiagenes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against theC. trachomatisgenomic library using a conditional-lethal mutant ofE. coliand identified the missing essential gene in the lipid A biosynthetic pathway, which we designatedlpxG We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activityin vitro Overexpression of LpxG inC. trachomatisleads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating thein vivofunction of LpxG and highlighting the importance of regulated lipid A biosynthesis inC. trachomatis.