25 resultados para Binding sites (Biochemistry)

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We developed a high-throughput yeast-based assay to screen for chemical inhibitors of Ca(2+)/calmodulin-dependent kinase pathways. After screening two small libraries, we identified the novel antagonist 125-C9, a substituted ethyleneamine. In vitro kinase assays confirmed that 125-C9 inhibited several calmodulin-dependent kinases (CaMKs) competitively with Ca(2+)/calmodulin (Ca(2+)/CaM). This suggested that 125-C9 acted as an antagonist for Ca(2+)/CaM rather than for CaMKs. We confirmed this hypothesis by showing that 125-C9 binds directly to Ca(2+)/CaM using isothermal titration calorimetry. We further characterized binding of 125-C9 to Ca(2+)/CaM and compared its properties with those of two well-studied CaM antagonists: trifluoperazine (TFP) and W-13. Isothermal titration calorimetry revealed that binding of 125-C9 to CaM is absolutely Ca(2+)-dependent, likely occurs with a stoichiometry of five 125-C9 molecules to one CaM molecule, and involves an exchange of two protons at pH 7.0. Binding of 125-C9 is driven overall by entropy and appears to be competitive with TFP and W-13, which is consistent with occupation of similar binding sites. To test the effects of 125-C9 in living cells, we evaluated mitogen-stimulated re-entry of quiescent cells into proliferation and found similar, although slightly better, levels of inhibition by 125-C9 than by TFP and W-13. Our results not only define a novel Ca(2+)/CaM inhibitor but also reveal that chemically unique CaM antagonists can bind CaM by distinct mechanisms but similarly inhibit cellular actions of CaM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human lymphocytes are known to posessess a catecholamine-responsive adenylate cyclase which has typical beta-adrenergic specificity. To identify directly and to quantitate these beta-adenergic receptors in human lymphocytes, (-) [3H] alprenolol, a potent beta-adrenergic antagonist, was used to label binding sites in homogenates of human mononuclear leukocytes. Binding of (-) [3H] alprenolol to these sites demonstrated the kinetics, affinity, and stereospecificity expected of binding to adenylate cyclase-coupled beta-adrenergic receptors. Binding was rapid (t1/2 less than 30 s) and rapidly reversible (t1/2 less than 3 min) at 37 degrees C. Binding was a saturable process with 75 +/- 12 fmol (-) [3H] alprenolol bound/mg protein (mean +/- SEM) at saturation, corresponding to about 2,000 sites/cell. Half-maximal saturation occurred at 10 nM (-) [3H] alprenolol, which provides an estimate of the dissociation constant of (-) [3H] alprenolol for the beta-adrenergic receptor. The beta-adrenergic antagonist, (-) propranolol, potently competed for the binding sites, causing half-maximal inhibition of binding at 9 nM. beta-Adrenergic agonists also competed for the binding sites. The order of potency was (-) isoproterenol greater than (-) epinephrine greater than (-)-norepinephrine which agreed with the order of potency of these agents in stimulating leukocyte adenylate cyclase. Dissociation constants computed from binding experiments were virtually identical to those obtained from adenylate cyclase activation studies. Marked stereospecificity was observed for both binding and activation of adenylate cyclase. (-)Stereoisomers of beta-adrenergic agonists and antagonists were 9- to 300-fold more potent than their corresponding (+) stereoisomers. Structurally related compounds devoid of beta-adrenergic activity such as dopamine, dihydroxymandelic acid, normetanephrine, pyrocatechol, and phentolamine did not effectively compete for the binding sites. (-) [3H] alprenolol binding to human mononuclear leukocyte preparations was almost entirely accounted for by binding to small lymphocytes, the predominant cell type in the preparations. No binding was detectable to human erythrocytes. These results demonstrate the feasibility of using direct binding methods to study beta-adrenergic receptors in a human tissue. They also provide an experimental approach to the study of states of altered sensitivity to catecholamines at the receptor level in man.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin condensation and nuclear envelope breakdown. We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. Both CRM1 binding and the ability to direct nuclear export were affected by mutation of these phosphorylation sites; thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Post-transcriptional regulation of cytoplasmic mRNAs is an efficient mechanism of regulating the amounts of active protein within a eukaryotic cell. RNA sequence elements located in the untranslated regions of mRNAs can influence transcript degradation or translation through associations with RNA-binding proteins. Tristetraprolin (TTP) is the best known member of a family of CCCH zinc finger proteins that targets adenosine-uridine rich element (ARE) binding sites in the 3’ untranslated regions (UTRs) of mRNAs, promoting transcript deadenylation through the recruitment of deadenylases. More specifically, TTP has been shown to bind AREs located in the 3’-UTRs of transcripts with known roles in the inflammatory response. The mRNA-binding region of the protein is the highly conserved CCCH tandem zinc finger (TZF) domain. The synthetic TTP TZF domain has been shown to bind with high affinity to the 13-mer sequence of UUUUAUUUAUUUU. However, the binding affinities of full-length TTP family members to the same sequence and its variants are unknown. Furthermore, the distance needed between two overlapping or neighboring UUAUUUAUU 9-mers for tandem binding events of a full-length TTP family member to a target transcript has not been explored. To address these questions, we recombinantly expressed and purified the full-length C. albicans TTP family member Zfs1. Using full-length Zfs1, tagged at the N-terminus with maltose binding protein (MBP), we determined the binding affinities of the protein to the optimal TTP binding sequence, UUAUUUAUU. Fluorescence anisotropy experiments determined that the binding affinities of MBP-Zfs1 to non-canonical AREs were influenced by ionic buffer strength, suggesting that transcript selectivity may be affected by intracellular conditions. Furthermore, electrophoretic mobility shift assays (EMSAs) revealed that separation of two core AUUUA sequences by two uridines is sufficient for tandem binding of MBP-Zfs1. Finally, we found evidence for tandem binding of MBP-Zfs1 to a 27-base RNA oligonucleotide containing only a single ARE-binding site, and showed that this was concentration and RNA length dependent; this phenomenon had not been seen previously. These data suggest that the association of the TTP TZF domain and the TZF domains of other species, to ARE-binding sites is highly conserved. Domains outside of the TZF domain may mediate transcript selectivity in changing cellular conditions, and promote protein-RNA interactions not associated with the ARE-binding TZF domain.

In summary, the evidence presented here suggests that Zfs1-mediated decay of mRNA targets may require additional interactions, in addition to ARE-TZF domain associations, to promote transcript destabilization and degradation. These studies further our understanding of post-transcriptional steps in gene regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

mRNA localization is emerging as a critical cellular mechanism for the spatiotemporal regulation of protein expression and serves important roles in oogenesis, embryogenesis, cell fate specification, and synapse formation. Signal sequence-encoding mRNAs are localized to the endoplasmic reticulum (ER) membrane by either of two mechanisms, a canonical mechanism of translation on ER-bound ribosomes (signal recognition particle pathway), or a poorly understood direct ER anchoring mechanism. In this study, we identify that the ER integral membrane proteins function as RNA-binding proteins and play important roles in the direct mRNA anchoring to the ER. We report that one of the ER integral membrane RNA-binding protein, AEG-1 (astrocyte elevated gene-1), functions in the direct ER anchoring and translational regulation of mRNAs encoding endomembrane transmembrane proteins. HITS-CLIP and PAR-CLIP analyses of the AEG-1 mRNA interactome of human hepatocellular carcinoma cells revealed a high enrichment for mRNAs encoding endomembrane organelle proteins, most notably encoding transmembrane proteins. AEG-1 binding sites were highly enriched in the coding sequence and displayed a signature cluster enrichment downstream of encoded transmembrane domains. In overexpression and knockdown models, AEG-1 expression markedly regulates translational efficiency and protein functions of two of its bound transcripts, MDR1 and NPC1. This study reveals a molecular mechanism for the selective localization of mRNAs to the ER and identifies a novel post-transcriptional gene regulation function for AEG-1 in membrane protein expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microbicides are women-controlled prophylactics for sexually transmitted infections. The most important class of microbicides target HIV-1 and contain antiviral agents formulated for topical vaginal delivery. Identification of new viral entry inhibitors that target the HIV-1 envelope is important because they can inactivate HIV-1 in the vaginal lumen before virions can come in contact with CD4+ cells in the vaginal mucosa. Carbohydrate binding agents (CBAs) demonstrate the ability to act as entry inhibitors due to their ability to bind to glycans and prevent gp120 binding to CD4+ cells. However, as proteins they present significant challenges in regard to economical production and formulation for resource-poor environments. We have synthesized water-soluble polymer CBAs that contain multiple benzoboroxole moieties. A benzoboroxole-functionalized monomer was synthesized and incorporated into linear oligomers with 2-hydroxypropylmethacrylamide (HPMAm) at different feed ratios using free radical polymerization. The benzoboroxole small molecule analogue demonstrated weak affinity for HIV-1BaL gp120 by SPR; however, the 25 mol % functionalized benzoboroxole oligomer demonstrated a 10-fold decrease in the K(D) for gp120, suggesting an increased avidity for the multivalent polymer construct. High molecular weight polymers functionalized with 25, 50, and 75 mol % benzoboroxole were synthesized and tested for their ability to neutralize HIV-1 entry for two HIV-1 clades and both R5 and X4 coreceptor tropism. All three polymers demonstrated activity against all viral strains tested with EC(50)s that decrease from 15000 nM (1500 microg mL(-1)) for the 25 mol % functionalized polymers to 11 nM (1 microg mL(-1)) for the 75 mol % benzoboroxole-functionalized polymers. These polymers exhibited minimal cytotoxicity after 24 h exposure to a human vaginal cell line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Kinesin motors hydrolyze ATP to produce force and move along microtubules, converting chemical energy into work by a mechanism that is only poorly understood. Key transitions and intermediate states in the process are still structurally uncharacterized, and remain outstanding questions in the field. Perturbing the motor by introducing point mutations could stabilize transitional or unstable states, providing critical information about these rarer states. RESULTS: Here we show that mutation of a single residue in the kinesin-14 Ncd causes the motor to release ADP and hydrolyze ATP faster than wild type, but move more slowly along microtubules in gliding assays, uncoupling nucleotide hydrolysis from force generation. A crystal structure of the motor shows a large rotation of the stalk, a conformation representing a force-producing stroke of Ncd. Three C-terminal residues of Ncd, visible for the first time, interact with the central beta-sheet and dock onto the motor core, forming a structure resembling the kinesin-1 neck linker, which has been proposed to be the primary force-generating mechanical element of kinesin-1. CONCLUSIONS: Force generation by minus-end Ncd involves docking of the C-terminus, which forms a structure resembling the kinesin-1 neck linker. The mechanism by which the plus- and minus-end motors produce force to move to opposite ends of the microtubule appears to involve the same conformational changes, but distinct structural linkers. Unstable ADP binding may destabilize the motor-ADP state, triggering Ncd stalk rotation and C-terminus docking, producing a working stroke of the motor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.