6 resultados para Bifunctional Initiator

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial cell (EC) seeding represents a promising approach to provide a nonthrombogenic surface on vascular grafts. In this study, we used a porcine EC/smooth muscle cell (SMC) coculture model that was previously developed to examine the efficacy of EC seeding. Expression of tissue factor (TF), a primary initiator in the coagulation cascade, and TF activity were used as indicators of thrombogenicity. Using immunostaining, primary cultures of porcine EC showed a low level of TF expression, but a highly heterogeneous distribution pattern with 14% of ECs expressing TF. Quiescent primary cultures of porcine SMCs displayed a high level of TF expression and a uniform pattern of staining. When we used a two-stage amidolytic assay, TF activity of ECs cultured alone was very low, whereas that of SMCs was high. ECs cocultured with SMCs initially showed low TF activity, but TF activity of cocultures increased significantly 7-8 days after EC seeding. The increased TF activity was not due to the activation of nuclear factor kappa-B on ECs and SMCs, as immunostaining for p65 indicated that nuclear factor kappa-B was localized in the cytoplasm in an inactive form in both ECs and SMCs. Rather, increased TF activity appeared to be due to the elevated reactive oxygen species levels and contraction of the coculture, thereby compromising the integrity of EC monolayer and exposing TF on SMCs. The incubation of cocultures with N-acetyl-cysteine (2 mM), an antioxidant, inhibited contraction, suggesting involvement of reactive oxygen species in regulating the contraction. The results obtained from this study provide useful information for understanding thrombosis in tissue-engineered vascular grafts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decreased activity of the guanine nucleotide regulatory protein (N) of the adenylate cyclase system is present in cell membranes of some patients with pseudohypoparathyrodism (PHP-Ia) whereas others have normal activity of N (PHP-Ib). Low N activity in PHP-Ia results in a decrease in hormone (H)-stimulatable adenylate cyclase in various tissues, which might be due to decreased ability to form an agonist-specific high affinity complex composed of H, receptor (R), and N. To test this hypothesis, we compared beta-adrenergic agonist-specific binding properties in erythrocyte membranes from five patients with PHP-Ia (N = 45% of control), five patients with PHP-Ib (N = 97%), and five control subjects. Competition curves that were generated by increasing concentrations of the beta-agonist isoproterenol competing with [125I]pindolol were shallow (slope factors less than 1) and were computer fit to a two-state model with corresponding high and low affinity for the agonist. The agonist competition curves from the PHP-Ia patients were shifted significantly (P less than 0.02) to the right as a result of a significant (P less than 0.01) decrease in the percent of beta-adrenergic receptors in the high affinity state from 64 +/- 22% in PHP-Ib and 56 +/- 5% in controls to 10 +/- 8% in PHP-Ia. The agonist competition curves were computer fit to a "ternary complex" model for the two-step reaction: H + R + N in equilibrium HR + N in equilibrium HRN. The modeling was consistent with a 60% decrease in the functional concentration of N, and was in good agreement with the biochemically determined decrease in erythrocyte N protein activity. These in vitro findings in erythrocytes taken together with the recent observations that in vivo isoproterenol-stimulated adenylate cyclase activity is decreased in patients with PHP (Carlson, H. E., and A. S. Brickman, 1983, J. Clin. Endocrinol. Metab. 56:1323-1326) are consistent with the notion that N is a bifunctional protein interacting with both R and the adenylate cyclase. It may be that in patients with PHP-Ia a single molecular and genetic defect accounts for both decreased HRN formation and decreased adenylate cyclase activity, whereas in PHP-Ib the biochemical lesion(s) appear not to affect HRN complex formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kingella kingae is a bacterial pathogen that is increasingly recognized as an etiology of septic arthritis, osteomyelitis, bacteremia, and endocarditis in young children. The pathogenesis of K. kingae disease starts with bacterial adherence to the respiratory epithelium of the posterior pharynx. Previous work has identified type IV pili and a trimeric autotransporter protein called Knh (Kingella NhhA homolog) as critical factors for adherence to human epithelial cells. Additional studies established that the presence of a polysaccharide capsule interferes with Knh-mediated adherence. Given the inhibitory role of capsule during adherence we sought to uncover the genes involved in capsule expression to understand how capsule is elaborated on the cell surface. Additionally, this work aimed to further characterize capsule diversity among K. kingae clinical isolates and to investigate the relationship between capsule type and site of isolation.

We first set out to identify the carbohydrates present in the K. kingae capsule present in the prototype strain 269-492. Glycosyl composition and NMR analysis of surface extractable polysaccharides demonstrated two distinct polysaccharides, one consisting of GalNAc and Kdo with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and the other containing galactose alone with the structure →5)-β-Galf-(1→.

To discern the two polysaccharides we disrupted the ctrA gene required for surface localization of the K. kingae polysaccharide capsule and observed a loss of GalNAc and Kdo but no effect on the presence of Gal in bacterial surface extracts. In contrast, deletion of the pamABCDE locus involved in production of a reported galactan exopolysaccharide eliminated Gal but had no effect on the presence of GalNAc and Kdo in surface extracts. These results established that K. kingae strain KK01 produces a polysaccharide capsule with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and a separate exopolysaccharide with the structure →5)-β-Galf-(1→.

Having established that K. kingae produces a capsule comprised of GalNAc and Kdo, we next set out to identify the genetic determinants of capsule through a transposon mutagenesis screen. In addition to the previously identified ctrABCD operon, lipA, lipB, and a putative glycosyltransferase termed csaA (capsule synthesis region A gene A) were found to be essential for the production of surface-localized capsule. The ctr operon, lipA, lipB, and csaA were found to be present at unlinked locations throughout the genome, which is atypical for gram-negative organisms that elaborate a capsule dependent on an ABC-type transporter for surface localization. Through examining capsule localization in the ctrA, lipA, lipB, and csaA mutant strains, we determined that the ctrABCD, lipA/lipB, and csaA gene products respectively function in capsule export, assembly, and synthesis, respectively. The GalNAc transferase and Kdo transferase domains found in CsaA further support its role in catalyzing the synthesis of the GalNAc-Kdo capsule in the K. kingae prototype strain.

To investigate the capsule diversity that exists in K. kingae we screened a panel of strains isolated from patients with invasive disease or healthy carriers for the csaA capsule synthesis locus. We discovered that Kingella kingae expresses one of 4 capsule synthesis loci (csa, csb, csc, or csd) associated with a capsule consisting of Kdo and GalNAc (type a), Kdo and GlcNAc (type b), Kdo and ribose (type c), and GlcNAc and galactose (type d), respectively. Cloning of the csa, csb, csc, or csd locus into the empty flanking gene region in a non-encapsulated mutant (creation of an isogenic capsule swap) was sufficient to produce either the type a, type b, or type c capsule, respectively, further supporting the role of these loci in expression of a specific polysaccharide linkage. Capsule type a and capsule type b accounted for 96% of invasive strains. Conversely, capsule type c and capsule type d were found disproportionately among carrier isolates, suggesting that capsule type is important in promoting invasion and dissemination.

In conclusion, we discovered that Kingella kingae expresses a polysaccharide capsule and an exopolysaccharide on its surface that require distinct genetic loci for surface localization. Further investigation into genetic determinants of encapsulation revealed the loci ctrABCD, lipA/lipB, and a putative glycosyltransferase are required for capsule expression, with the gene products having roles in capsule export, assembly, and synthesis, respectively. The putative glycosyltransferase CsaA was determined to be a bifunctional enzyme with both GalNAc-transferase and Kdo-transferase activity. Furthermore, we discovered a total of 4 capsule types expressed in clinical isolates of K. kingae, each with a distinct capsule synthesis locus. The variation in the proportion of capsule types found between invasive strains and carriage strains suggest that capsule type is important in promoting invasion and dissemination. Taken together, this work expands our knowledge of the capsule types expressed among K. kingae carrier and invasive isolates and provides insights into the common genetic determinants of capsule expression. These contributions may lead to selecting clinically relevant capsule types to develop into a capsule based vaccine to prevent K. kingae colonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of DNA as a polymeric building material transcends its function in biology and is exciting in bionanotechnology for applications ranging from biosensing, to diagnostics, and to targeted drug delivery. These applications are enabled by DNA’s unique structural and chemical properties, embodied as a directional polyanion that exhibits molecular recognition capabilities. Hence, the efficient and precise synthesis of high molecular weight DNA materials has become key to advance DNA bionanotechnology. Current synthesis methods largely rely on either solid phase chemical synthesis or template-dependent polymerase amplification. The inherent step-by-step fashion of solid phase synthesis limits the length of the resulting DNA to typically less than 150 nucleotides. In contrast, polymerase based enzymatic synthesis methods (e.g., polymerase chain reaction) are not limited by product length, but require a DNA template to guide the synthesis. Furthermore, advanced DNA bionanotechnology requires tailorable structural and self-assembly properties. Current synthesis methods, however, often involve multiple conjugating reactions and extensive purification steps.

The research described in this dissertation aims to develop a facile method to synthesize high molecular weight, single stranded DNA (or polynucleotide) with versatile functionalities. We exploit the ability of a template-independent DNA polymerase−terminal deoxynucleotidyl transferase (TdT) to catalyze the polymerization of 2’-deoxyribonucleoside 5’-triphosphates (dNTP, monomer) from the 3’-hydroxyl group of an oligodeoxyribonucleotide (initiator). We termed this enzymatic synthesis method: TdT catalyzed enzymatic polymerization, or TcEP.

Specifically, this dissertation is structured to address three specific research aims. With the objective to generate high molecular weight polynucleotides, Specific Aim 1 studies the reaction kinetics of TcEP by investigating the polymerization of 2’-deoxythymidine 5’-triphosphates (monomer) from the 3’-hydroxyl group of oligodeoxyribothymidine (initiator) using in situ 1H NMR and fluorescent gel electrophoresis. We found that TcEP kinetics follows the “living” chain-growth polycondensation mechanism, and like in “living” polymerizations, the molecular weight of the final product is determined by the starting molar ratio of monomer to initiator. The distribution of the molecular weight is crucially influenced by the molar ratio of initiator to TdT. We developed a reaction kinetics model that allows us to quantitatively describe the reaction and predict the molecular weight of the reaction products.

Specific Aim 2 further explores TcEP’s ability to transcend homo-polynucleotide synthesis by varying the choices of initiators and monomers. We investigated the effects of initiator length and sequence on TcEP, and found that the minimum length of an effective initiator should be 10 nucleotides and that the formation of secondary structures close to the 3’-hydroxyl group can impede the polymerization reaction. We also demonstrated TcEP’s capacity to incorporate a wide range of unnatural dNTPs into the growing chain, such as, hydrophobic fluorescent dNTP and fluoro modified dNTP. By harnessing the encoded nucleotide sequence of an initiator and the chemical diversity of monomers, TcEP enables us to introduce molecular recognition capabilities and chemical functionalities on the 5’-terminus and 3’-terminus, respectively.

Building on TcEP’s synthesis capacities, in Specific Aim 3 we invented a two-step strategy to synthesize diblock amphiphilic polynucleotides, in which the first, hydrophilic block serves as a macro-initiator for the growth of the second block, comprised of natural and/or unnatural nucleotides. By tuning the hydrophilic length, we synthesized the amphiphilic diblock polynucleotides that can self-assemble into micellar structures ranging from star-like to crew-cut morphologies. The observed self-assembly behaviors agree with predictions from dissipative particle dynamics simulations as well as scaling law for polyelectrolyte block copolymers.

In summary, we developed an enzymatic synthesis method (i.e., TcEP) that enables the facile synthesis of high molecular weight polynucleotides with low polydispersity. Although we can control the nucleotide sequence only to a limited extent, TcEP offers a method to integrate an oligodeoxyribonucleotide with specific sequence at the 5’-terminus and to incorporate functional groups along the growing chains simultaneously. Additionally, we used TcEP to synthesize amphiphilic polynucleotides that display self-assemble ability. We anticipate that our facile synthesis method will not only advance molecular biology, but also invigorate materials science and bionanotechnology.