3 resultados para Bibliographical citations

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Outcome assessment can support the therapeutic process by providing a way to track symptoms and functionality over time, providing insights to clinicians and patients, as well as offering a common language to discuss patient behavior/functioning. OBJECTIVES: In this article, we examine the patient-based outcome assessment (PBOA) instruments that have been used to determine outcomes in acupuncture clinical research and highlight measures that are feasible, practical, economical, reliable, valid, and responsive to clinical change. The aims of this review were to assess and identify the commonly available PBOA measures, describe a framework for identifying appropriate sets of measures, and address the challenges associated with these measures and acupuncture. Instruments were evaluated in terms of feasibility, practicality, economy, reliability, validity, and responsiveness to clinical change. METHODS: This study was a systematic review. A total of 582 abstracts were reviewed using PubMed (from inception through April 2009). RESULTS: A total of 582 citations were identified. After screening of title/abstract, 212 articles were excluded. From the remaining 370 citations, 258 manuscripts identified explicit PBOA; 112 abstracts did not include any PBOA. The five most common PBOA instruments identified were the Visual Analog Scale, Symptom Diary, Numerical Pain Rating Scales, SF-36, and depression scales such as the Beck Depression Inventory. CONCLUSIONS: The way a questionnaire or scale is administered can have an effect on the outcome. Also, developing and validating outcome measures can be costly and difficult. Therefore, reviewing the literature on existing measures before creating or modifying PBOA instruments can significantly reduce the burden of developing a new measure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent efforts to endogenize technological change in climate policy models demonstrate the importance of accounting for the opportunity cost of climate R&D investments. Because the social returns to R&D investments are typically higher than the social returns to other types of investment, any new climate mitigation R&D that comes at the expense of other R&D investment may dampen the overall gains from induced technological change. Unfortunately, there has been little empirical work to guide modelers as to the potential magnitude of such crowding out effects. This paper considers both the private and social opportunity costs of climate R&D. Addressing private costs, we ask whether an increase in climate R&D represents new R&D spending, or whether some (or all) of the additional climate R&D comes at the expense of other R&D. Addressing social costs, we use patent citations to compare the social value of alternative energy research to other types of R&D that may be crowded out. Beginning at the industry level, we find no evidence of crowding out across sectors-that is, increases in energy R&D do not draw R&D resources away from sectors that do not perform R&D. Given this, we proceed with a detailed look at alternative energy R&D. Linking patent data and financial data by firm, we ask whether an increase in alternative energy patents leads to a decrease in other types of patenting activity. While we find that increases in alternative energy patents do result in fewer patents of other types, the evidence suggests that this is due to profit-maximizing changes in research effort, rather than financial constraints that limit the total amount of R&D possible. Finally, we use patent citation data to compare the social value of alternative energy patents to other patents by these firms. Alternative energy patents are cited more frequently, and by a wider range of other technologies, than other patents by these firms, suggesting that their social value is higher. © 2011 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common challenge that users of academic databases face is making sense of their query outputs for knowledge discovery. This is exacerbated by the size and growth of modern databases. PubMed, a central index of biomedical literature, contains over 25 million citations, and can output search results containing hundreds of thousands of citations. Under these conditions, efficient knowledge discovery requires a different data structure than a chronological list of articles. It requires a method of conveying what the important ideas are, where they are located, and how they are connected; a method of allowing users to see the underlying topical structure of their search. This paper presents VizMaps, a PubMed search interface that addresses some of these problems. Given search terms, our main backend pipeline extracts relevant words from the title and abstract, and clusters them into discovered topics using Bayesian topic models, in particular the Latent Dirichlet Allocation (LDA). It then outputs a visual, navigable map of the query results.