5 resultados para Benign Ovarian Tumours
em Duke University
Resumo:
BACKGROUND: Mutations in the TP53 gene are extremely common and occur very early in the progression of serous ovarian cancers. Gene expression patterns that relate to mutational status may provide insight into the etiology and biology of the disease. METHODS: The TP53 coding region was sequenced in 89 frozen serous ovarian cancers, 40 early stage (I/II) and 49 advanced stage (III/IV). Affymetrix U133A expression data was used to define gene expression patterns by mutation, type of mutation, and cancer stage. RESULTS: Missense or chain terminating (null) mutations in TP53 were found in 59/89 (66%) ovarian cancers. Early stage cancers had a significantly higher rate of null mutations than late stage disease (38% vs. 8%, p < 0.03). In advanced stage cases, mutations were more prevalent in short term survivors than long term survivors (81% vs. 30%, p = 0.0004). Gene expression patterns had a robust ability to predict TP53 status within training data. By using early versus late stage disease for out of sample predictions, the signature derived from early stage cancers could accurately (86%) predict mutation status of late stage cancers. CONCLUSIONS: This represents the first attempt to define a genomic signature of TP53 mutation in ovarian cancer. Patterns of gene expression characteristic of TP53 mutation could be discerned and included several genes that are known p53 targets or have been described in the context of expression signatures of TP53 mutation in breast cancer.
Resumo:
BACKGROUND: We previously identified a panel of genes associated with outcome of ovarian cancer. The purpose of the current study was to assess whether variants in these genes correlated with ovarian cancer risk. METHODS AND FINDINGS: Women with and without invasive ovarian cancer (749 cases, 1,041 controls) were genotyped at 136 single nucleotide polymorphisms (SNPs) within 13 candidate genes. Risk was estimated for each SNP and for overall variation within each gene. At the gene-level, variation within MSL1 (male-specific lethal-1 homolog) was associated with risk of serous cancer (p = 0.03); haplotypes within PRPF31 (PRP31 pre-mRNA processing factor 31 homolog) were associated with risk of invasive disease (p = 0.03). MSL1 rs7211770 was associated with decreased risk of serous disease (OR 0.81, 95% CI 0.66-0.98; p = 0.03). SNPs in MFSD7, BTN3A3, ZNF200, PTPRS, and CCND1A were inversely associated with risk (p<0.05), and there was increased risk at HEXIM1 rs1053578 (p = 0.04, OR 1.40, 95% CI 1.02-1.91). CONCLUSIONS: Tumor studies can reveal novel genes worthy of follow-up for cancer susceptibility. Here, we found that inherited markers in the gene encoding MSL1, part of a complex that modifies the histone H4, may decrease risk of invasive serous ovarian cancer.
Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer.
Resumo:
BACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio)(per allele) = 0.66; 95% credible interval (CI) = 0.44-1.00) and rs6005835 (median OR(per allele) = 0.69; 95% CI = 0.53-0.91) in CHEK2, rs2078486 (median OR(per allele) = 1.65; 95% CI = 1.21-2.25) and rs12951053 (median OR(per allele) = 1.65; 95% CI = 1.20-2.26) in TP53, rs411697 (median OR (rare homozygote) = 0.53; 95% CI = 0.35 - 0.79) in BACH1 and rs10131 (median OR( rare homozygote) = not estimable) in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.
Resumo:
The kinesin-like factor 1 B (KIF1B) gene plays an important role in the process of apoptosis and the transformation and progression of malignant cells. Genetic variations in KIF1B may contribute to risk of epithelial ovarian cancer (EOC). In this study of 1,324 EOC patients and 1,386 cancer-free female controls, we investigated associations between two potentially functional single nucleotide polymorphisms in KIF1B and EOC risk by the conditional logistic regression analysis. General linear regression model was used to evaluate the correlation between the number of variant alleles and KIF1B mRNA expression levels. We found that the rs17401966 variant AG/GG genotypes were significantly associated with a decreased risk of EOC (adjusted odds ratio (OR) = 0.81, 95 % confidence interval (CI) = 0.68-0.97), compared with the AA genotype, but no associations were observed for rs1002076. Women who carried both rs17401966 AG/GG and rs1002076 AG/AA genotypes of KIF1B had a 0.82-fold decreased risk (adjusted 95 % CI = 0.69-0.97), compared with others. Additionally, there was no evidence of possible interactions between about-mentioned co-variants. Further genotype-phenotype correlation analysis indicated that the number of rs17401966 variant G allele was significantly associated with KIF1B mRNA expression levels (P for GLM = 0.003 and 0.001 in all and Chinese subjects, respectively), with GG carriers having the lowest level of KIF1B mRNA expression. Taken together, the rs17401966 polymorphism likely regulates KIF1B mRNA expression and thus may be associated with EOC risk in Eastern Chinese women. Larger, independent studies are warranted to validate our findings.
Resumo:
Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls) from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical logistic regression model for predicting case-control status that included imputation of missing data. We randomly divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this improved model to estimate absolute risk and evaluating it in prospective data sets is warranted.