4 resultados para Behavior patterns
em Duke University
Resumo:
The relation between social rejection and growth in antisocial behavior was investigated. In Study 1,259 boys and girls (34% African American) were followed from Grades 1 to 3 (ages 6-8 years) to Grades 5 to 7 (ages 10-12 years). Early peer rejection predicted growth in aggression. In Study 2,585 boys and girls (16% African American) were followed from kindergarten to Grade 3 (ages 5-8 years), and findings were replicated. Furthermore, early aggression moderated the effect of rejection, such that rejection exacerbated antisocial development only among children initially disposed toward aggression. In Study 3, social information-processing patterns measured in Study 1 were found to mediate partially the effect of early rejection on later aggression. In Study 4, processing patterns measured in Study 2 replicated the mediation effect. Findings are integrated into a recursive model of antisocial development.
Resumo:
Current strategies to limit macrophage adhesion, fusion and fibrous capsule formation in the foreign body response have focused on modulating material surface properties. We hypothesize that topography close to biological scale, in the micron and nanometric range, provides a passive approach without bioactive agents to modulate macrophage behavior. In our study, topography-induced changes in macrophage behavior was examined using parallel gratings (250 nm-2 mum line width) imprinted on poly(epsilon-caprolactone) (PCL), poly(lactic acid) (PLA) and poly(dimethyl siloxane) (PDMS). RAW 264.7 cell adhesion and elongation occurred maximally on 500 nm gratings compared to planar controls over 48 h. TNF-alpha and VEGF secretion levels by RAW 264.7 cells showed greatest sensitivity to topographical effects, with reduced levels observed on larger grating sizes at 48 h. In vivo studies at 21 days showed reduced macrophage adhesion density and degree of high cell fusion on 2 mum gratings compared to planar controls. It was concluded that topography affects macrophage behavior in the foreign body response on all polymer surfaces examined. Topography-induced changes, independent of surface chemistry, did not reveal distinctive patterns but do affect cell morphology and cytokine secretion in vitro, and cell adhesion in vivo particularly on larger size topography compared to planar controls.
Resumo:
The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.
Resumo:
We examined how individual differences in social understanding contribute to variability in early-appearing prosocial behavior. Moreover, potential sources of variability in social understanding were explored and examined as additional possible predictors of prosocial behavior. Using a multi-method approach with both observed and parent-report measures, 325 children aged 18-30 months were administered measures of social understanding (e.g., use of emotion words; self-understanding), prosocial behavior (in separate tasks measuring instrumental helping, empathic helping, and sharing, as well as parent-reported prosociality at home), temperament (fearfulness, shyness, and social fear), and parental socialization of prosocial behavior in the family. Individual differences in social understanding predicted variability in empathic helping and parent-reported prosociality, but not instrumental helping or sharing. Parental socialization of prosocial behavior was positively associated with toddlers' social understanding, prosocial behavior at home, and instrumental helping in the lab, and negatively associated with sharing (possibly reflecting parents' increased efforts to encourage children who were less likely to share). Further, socialization moderated the association between social understanding and prosocial behavior, such that social understanding was less predictive of prosocial behavior among children whose parents took a more active role in socializing their prosociality. None of the dimensions of temperament was associated with either social understanding or prosocial behavior. Parental socialization of prosocial behavior is thus an important source of variability in children's early prosociality, acting in concert with early differences in social understanding, with different patterns of influence for different subtypes of prosocial behavior.