2 resultados para Behavior and Behavior Mechanisms
em Duke University
Resumo:
The ontogeny of human empathy is better understood with reference to the evolutionary history of the social brain. Empathy has deep evolutionary, biochemical, and neurological underpinnings. Even the most advanced forms of empathy in humans are built on more basic forms and remain connected to core mechanisms associated with affective communication, social attachment, and parental care. In this paper, we argue that it is essential to consider empathy within a neurodevelopmental framework that recognizes both the continuities and changes in socioemotional understanding from infancy to adulthood. We bring together neuroevolutionary and developmental perspectives on the information processing and neural mechanisms underlying empathy and caring, and show that they are grounded in multiple interacting systems and processes. Moreover, empathy in humans is assisted by other abstract and domain-general high-level cognitive abilities such as executive functions, mentalizing and language, as well as the ability to differentiate another's mental states from one's own, which expand the range of behaviors that can be driven by empathy.
Resumo:
In the last two decades, the field of homogeneous gold catalysis has been
extremely active, growing at a rapid pace. Another rapidly-growing field—that of
computational chemistry—has often been applied to the investigation of various gold-
catalyzed reaction mechanisms. Unfortunately, a number of recent mechanistic studies
have utilized computational methods that have been shown to be inappropriate and
inaccurate in their description of gold chemistry. This work presents an overview of
available computational methods with a focus on the approximations and limitations
inherent in each, and offers a review of experimentally-characterized gold(I) complexes
and proposed mechanisms as compared with their computationally-modeled
counterparts. No aim is made to identify a “recommended” computational method for
investigations of gold catalysis; rather, discrepancies between experimentally and
computationally obtained values are highlighted, and the systematic errors between
different computational methods are discussed.