2 resultados para Bauhin, Caspar, 1560-1624.

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The majority of total ankle arthroplasty (TAA) systems use extramedullary alignment guides for tibial component placement. However, at least 1 system offers intramedullary referencing. In total knee arthroplasty, studies suggest that tibial component placement is more accurate with intramedullary referencing. The purpose of this study was to compare the accuracy of extramedullary referencing with intramedullary referencing for tibial component placement in total ankle arthroplasty. METHODS: The coronal and sagittal tibial component alignment was evaluated on the postoperative weight-bearing anteroposterior (AP) and lateral radiographs of 236 consecutive fixed-bearing TAAs. Radiographs were measured blindly by 2 investigators. The postoperative alignment of the prosthesis was compared with the surgeon's intended alignment in both planes. The accuracy of tibial component alignment was compared between the extramedullary and intramedullary referencing techniques using unpaired t tests. Interrater and intrarater reliabilities were assessed with intraclass correlation coefficients (ICCs). RESULTS: Eighty-three tibial components placed with an extramedullary referencing technique were compared with 153 implants placed with an intramedullary referencing technique. The accuracy of the extramedullary referencing was within a mean of 1.5 ± 1.4 degrees and 4.1 ± 2.9 degrees in the coronal and sagittal planes, respectively. The accuracy of intramedullary referencing was within a mean of 1.4 ± 1.1 degrees and 2.5 ± 1.8 degrees in the coronal and sagittal planes, respectively. There was a significant difference (P < .001) between the 2 techniques with respect to the sagittal plane alignment. Interrater ICCs for coronal and sagittal alignment were high (0.81 and 0.94, respectively). Intrarater ICCs for coronal and sagittal alignment were high for both investigators. CONCLUSIONS: Initial sagittal plane tibial component alignment was notably more accurate when intramedullary referencing was used. Further studies are needed to determine the effect of this difference on clinical outcomes and long-term survivability of the implants. LEVEL OF EVIDENCE: Level III, retrospective comparative study.