5 resultados para Asimetría facial
em Duke University
Resumo:
Confronting the rapidly increasing, worldwide reliance on biometric technologies to surveil, manage, and police human beings, my dissertation
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated that promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests behavioral markers can be observed late in the first year of life. Many of these studies involved extensive frame-by-frame video observation and analysis of a child's natural behavior. Although non-intrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are impractical for clinical and large population research purposes. Diagnostic measures for ASD are available for infants but are only accurate when used by specialists experienced in early diagnosis. This work is a first milestone in a long-term multidisciplinary project that aims at helping clinicians and general practitioners accomplish this early detection/measurement task automatically. We focus on providing computer vision tools to measure and identify ASD behavioral markers based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure three critical AOSI activities that assess visual attention. We augment these AOSI activities with an additional test that analyzes asymmetrical patterns in unsupported gait. The first set of algorithms involves assessing head motion by tracking facial features, while the gait analysis relies on joint foreground segmentation and 2D body pose estimation in video. We show results that provide insightful knowledge to augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
CONCLUSION Radiation dose reduction, while saving image quality could be easily implemented with this approach. Furthermore, the availability of a dosimetric data archive provides immediate feedbacks, related to the implemented optimization strategies. Background JCI Standards and European Legislation (EURATOM 59/2013) require the implementation of patient radiation protection programs in diagnostic radiology. Aim of this study is to demonstrate the possibility to reduce patients radiation exposure without decreasing image quality, through a multidisciplinary team (MT), which analyzes dosimetric data of diagnostic examinations. Evaluation Data from CT examinations performed with two different scanners (Siemens DefinitionTM and GE LightSpeed UltraTM) between November and December 2013 are considered. CT scanners are configured to automatically send images to DoseWatch© software, which is able to store output parameters (e.g. kVp, mAs, pitch ) and exposure data (e.g. CTDIvol, DLP, SSDE). Data are analyzed and discussed by a MT composed by Medical Physicists and Radiologists, to identify protocols which show critical dosimetric values, then suggest possible improvement actions to be implemented. Furthermore, the large amount of data available allows to monitor diagnostic protocols currently in use and to identify different statistic populations for each of them. Discussion We identified critical values of average CTDIvol for head and facial bones examinations (respectively 61.8 mGy, 151 scans; 61.6 mGy, 72 scans), performed with the GE LightSpeed CTTM. Statistic analysis allowed us to identify the presence of two different populations for head scan, one of which was only 10% of the total number of scans and corresponded to lower exposure values. The MT adopted this protocol as standard. Moreover, the constant output parameters monitoring allowed us to identify unusual values in facial bones exams, due to changes during maintenance service, which the team promptly suggested to correct. This resulted in a substantial dose saving in CTDIvol average values of approximately 15% and 50% for head and facial bones exams, respectively. Diagnostic image quality was deemed suitable for clinical use by radiologists.