8 resultados para Arsenic remediation

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study how effectively information induces Bangladeshi households to avoid a health risk. The response to information is large and rapid; knowing that the household's well water has an unsafe concentration of arsenic raises the probability that the household changes to another well within one year by 0.37. Households who change wells increase the time spent obtaining water fifteen-fold. We identify a causal effect of information, since incidence of arsenic is uncorrelated with household characteristics. Our door-to-door information campaign provides well-specific arsenic levels without which behavior does not change. Media communicate general information about arsenic less expensively and no less effectively. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil spills in marine environments often damage marine and coastal life if not remediated rapidly and efficiently. In spite of the strict enforcement of environmental legislations (i.e., Oil Pollution Act 1990) following the Exxon Valdez oil spill (June 1989; the second biggest oil spill in U.S. history), the Macondo well blowout disaster (April 2010) released 18 times more oil. Strikingly, the response methods used to contain and capture spilled oil after both accidents were nearly identical, note that more than two decades separate Exxon Valdez (1989) and Macondo well (2010) accidents.

The goal of this dissertation was to investigate new advanced materials (mechanically strong aerogel composite blankets-Cabot® Thermal Wrap™ (TW) and Aspen Aerogels® Spaceloft® (SL)), and their applications for oil capture and recovery to overcome the current material limitations in oil spill response methods. First, uptake of different solvents and oils were studied to answer the following question: do these blanket aerogel composites have competitive oil uptake compared to state-of-the-art oil sorbents (i.e., polyurethane foam-PUF)? In addition to their competitive mechanical strength (766, 380, 92 kPa for Spaceloft, Thermal Wrap, and PUF, respectively), our results showed that aerogel composites have three critical advantages over PUF: rapid (3-5 min.) and high (more than two times of PUF’s uptake) oil uptake, reusability (over 10 cycles), and oil recoverability (up to 60%) via mechanical extraction. Chemical-specific sorption experiments showed that the dominant uptake mechanism of aerogels is adsorption to the internal surface, with some contribution of absorption into the pore space.

Second, we investigated the potential environmental impacts (energy and chemical burdens) associated with manufacturing, use, and disposal of SL aerogel and PUF to remove the oil (i.e., 1 m3 oil) from a location (i.e., Macondo well). Different use (single and multiple use) and end of life (landfill, incinerator, and waste-to-energy) scenarios were assessed, and our results demonstrated that multiple use, and waste-to-energy choices minimize the energy and material use of SL aerogel. Nevertheless, using SL once and disposing via landfill still offers environmental and cost savings benefits relative to PUF, and so these benefits are preserved irrespective of the oil-spill-response operator choices.

To inform future aerogel manufacture, we investigated the different laboratory-scale aerogel fabrication technologies (rapid supercritical extraction (RSCE), CO2 supercritical extraction (CSCE), alcohol supercritical extraction (ASCE)). Our results from anticipatory LCA for laboratory-scaled aerogel fabrication demonstrated that RSCE method offers lower cumulative energy and ecotoxicity impacts compared to conventional aerogel fabrication methods (CSCE and ASCE).

The final objective of this study was to investigate different surface coating techniques to enhance oil recovery by modifying the existing aerogel surface chemistries to develop chemically responsive materials (switchable hydrophobicity in response to a CO2 stimulus). Our results showed that studied surface coating methods (drop casting, dip coating, and physical vapor deposition) were partially successful to modify surface with CO2 switchable chemical (tributylpentanamidine), likely because of the heterogeneous fiber structure of the aerogel blankets. A possible solution to these non-uniform coatings would be to include switchable chemical as a precursor during the gel preparation to chemically attach the switchable chemical to the pores of the aerogel.

Taken as a whole, the implications of this work are that mechanical deployment and recovery of aerogel composite blankets is a viable oil spill response strategy that can be deployed today. This will ultimately enable better oil uptake without the uptake of water, potential reuse of the collected oil, reduced material and energy burdens compared to competitive sorbents (e.g., PUF), and reduced occupational exposure to oiled sorbents. In addition, sorbent blankets and booms could be deployed in coastal and open-ocean settings, respectively, which was previously impossible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many patients with neuropsychiatric illnesses, standard psychiatric treatments with mono or combination pharmacotherapy, psychotherapy, and transcranial magnetic stimulation are ineffective. For these patients with treatment-resistant neuropsychiatric illnesses, a main therapeutic option is electroconvulsive therapy (ECT). Decades of research have found ECT to be highly effective; however, it can also result in adverse neurocognitive effects. Specifically, ECT results in disorientation after each session, anterograde amnesia for recently learned information, and retrograde amnesia for previously learned information. Unfortunately, the neurocognitive effects and underlying mechanisms of action of ECT remain poorly understood. The purpose of this paper was to synthesize the multiple moderating and mediating factors that are thought to underlie the neurocognitive effects of ECT into a coherent model. Such factors include demographic and neuropsychological characteristics, neuropsychiatric symptoms, ECT technical parameters, and ECT-associated neurophysiological changes. Future research is warranted to evaluate and test this model, so that these findings may support the development of more refined clinical seizure therapy delivery approaches and efficacious cognitive remediation strategies to improve the use of this important and widely used intervention tool for neuropsychiatric diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many patients with neuropsychiatric illnesses, standard psychiatric treatments with mono or combination pharmacotherapy, psychotherapy, and transcranial magnetic stimulation are ineffective. For these patients with treatment-resistant neuropsychiatric illnesses, a main therapeutic option is electroconvulsive therapy (ECT). Decades of research have found ECT to be highly effective; however, it can also result in adverse neurocognitive effects. Specifically, ECT results in disorientation after each session, anterograde amnesia for recently learned information, and retrograde amnesia for previously learned information. Unfortunately, the neurocognitive effects and underlying mechanisms of action of ECT remain poorly understood. The purpose of this paper was to synthesize the multiple moderating and mediating factors that are thought to underlie the neurocognitive effects of ECT into a coherent model. Such factors include demographic and neuropsychological characteristics, neuropsychiatric symptoms, ECT technical parameters, and ECT-associated neurophysiological changes. Future research is warranted to evaluate and test this model, so that these findings may support the development of more refined clinical seizure therapy delivery approaches and efficacious cognitive remediation strategies to improve the use of this important and widely used intervention tool for neuropsychiatric diseases. Copyright © 2014 by Lippincott Williams & Wilkins.