2 resultados para Architectural design - Psychological aspects

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation consists of three essays on behavioral economics, with a general aim of enriching our understanding of economic decisions using behavioral insights and experimental methodology. Each essay takes on one particular topic with this general aim.

The first chapter studies savings behavior of the poor. In this project, partnering with a savings product provider in Kenya, we tested the extent to which behavioral interventions and financial incentives can increase the saving rate of individuals with low and irregular income. Our experiment lasted for six months and included a total of twelve conditions. The control condition received weekly reminders and balance reporting via text messages. The treatment conditions received in addition one of the following interventions: (1) reminder text messages framed as if they came from the participant’s kid (2) a golden colored coin with numbers for each week of the trial, on which participants were asked to keep track of their weekly deposits (3) a match of weekly savings: The match was either 10% or 20% up to a certain amount per week. The match was either deposited at the end of each week or the highest possible match was deposited at the start of each week and was adjusted at the end. Among these interventions, by far the most effective was the coin: Those in the coin condition saved on average the highest amount and more than twice as those in the control condition. We hypothesize that being a tangible track-keeping object; the coin made subjects remember to save more often. Our results support the line of literature suggesting that saving decisions involve psychological aspects and that policy makers and product designers should take these influences into account.

The second chapter is related to views towards inequality. In this project, we investigate how the perceived fairness of income distributions depends on the beliefs about the process that generated the inequality. Specifically, we examine how two crucial features of this process affect fairness views: (1) Procedural justice - equal treatment of all, (2) Agency - one's ability to determine his/her income. We do this in a lab experiment by varying the equality of opportunity (procedural justice), and one's ability to make choices, which consequently influence subjects’ ability to influence their income (agency). We then elicit ex-post redistribution decisions of the earnings as a function of these two elements. Our results suggest both agency and procedural justice matter for fairness. Our main findings can be summarized as follows: (1) Highlighting the importance of agency, we find that inequality resulting from risk is considered to be fair only when risk is chosen freely; (2) Highlighting the importance of procedural justice, we find that introducing inequality of opportunity significantly increases redistribution, however the share of subjects redistributing none remain close to the share of subjects redistributing fully revealing an underlying heterogeneity in the population about how fairness views should account for inequality of opportunity.

The third chapter is on morality. In this project, we study whether religious rituals act as an internal reminder for basic moral principles and thus affect moral judgments. To this end, we conducted two survey experiments in Turkey and Israel to specifically test the effect of Ramadan and Yom Kippur. The results from the Turkish sample how that Ramadan has a significant effect on moral judgments to some extent for those who report to believe in God. Those who believe in God judged the moral acceptability of ten out of sixty one actions significantly differently in Ramadan, whereas those who reported not to believe in God significantly changed their judgments only for one action in Ramadan. Our results extends the hypothesis established by lab experiments that religious reminders have a significant effect on morality, by testing it in the field in the natural environment of religious rituals.

This thesis is part of a broader collaborative research agenda with both colleagues and advisors. The programming, analyses, and writing, as well as any errors in this work, are my own.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.

In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.

In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.

In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.

In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.

Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.