13 resultados para Appropriate and inappropriate behaviors
em Duke University
Resumo:
OBJECTIVE: To investigate relationships between institutional mistrust (systematic discrimination, organizational suspicion, and conspiracy beliefs), HIV risk behaviors, and HIV testing in a multiethnic sample of men who have sex with men (MSM), and to test whether perceived susceptibility to HIV mediates these relationships for White and ethnic minority MSM. METHOD: Participants were 394 MSM residing in Central Arizona (M age = 37 years). Three dimensions of mistrust were examined, including organizational suspicion, conspiracy beliefs, and systematic discrimination. Assessments of sexual risk behavior, HIV testing, and perceived susceptibility to HIV were made at study entry (T1) and again 6 months later (T2). RESULTS: There were no main effects of institutional mistrust dimensions or ethnic minority status on T2 risk behavior, but the interaction of systematic discrimination and conspiracy beliefs with minority status was significant such that higher levels of systematic discrimination and more conspiracy beliefs were associated with increased risk only among ethnic minority MSM. Higher levels of systematic discrimination were significantly related to lower likelihood for HIV testing, and the interaction of organizational suspicion with minority status was significant such that greater levels of organizational suspicion were related to less likelihood of having been tested for HIV among ethnic minority MSM. Perceived susceptibility did not mediate these relationships. CONCLUSION: Findings suggest that it is important to look further into the differential effects of institutional mistrust across marginalized groups, including sexual and ethnic minorities. Aspects of mistrust should be addressed in HIV prevention and counseling efforts.
Resumo:
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+), but not paternal (m+/p-), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.
Resumo:
As part of a long-term study on howling monkey behavior and social dynamics, a known natal male was observed taking over his group from his putative sire. Due to the accidental death of one of the adult males, this natal male had matured in a one-male group and had never observed juvenile male emigration nor adult male immigration and associated behaviors. Nevertheless, the behaviors associated with the takeover were indistinguishable from those of an immigrant male, including disappearance of immatures, one of whom was found with extensive injuries. While it cannot be said that the natal male inherited these behaviors from his presumed father, it can be said that he exhibited species-typical behaviors associated with male takeover in the absence of observational learning. © 1994 Japan Monkey Centre.
Resumo:
Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents. © The Ecological Society of America.
Resumo:
Trust and cooperation constitute cornerstones of common-pool resource theory, showing that "prosocial" strategies among resource users can overcome collective action problems and lead to sustainable resource governance. Yet, antisocial behavior and especially the coexistence of prosocial and antisocial behaviors have received less attention. We broaden the analysis to include the effects of both "prosocial" and "antisocial" interactions. We do so in the context of marine protected areas (MPAs), the most prominent form of biodiversity conservation intervention worldwide. Our multimethod approach relied on lab-in-the-field economic experiments (n = 127) in two MPA and two non-MPA communities in Baja California, Mexico. In addition, we deployed a standardized fishers' survey (n = 544) to verify the external validity of our findings and expert informant interviews (n = 77) to develop potential explanatory mechanisms. In MPA sites, prosocial and antisocial behavior is significantly higher, and the presence of antisocial behavior does not seem to have a negative effect on prosocial behavior. We suggest that market integration, economic diversification, and strengthened group identity in MPAs are the main potential mechanisms for the simultaneity of prosocial and antisocial behavior we observed. This study constitutes a first step in better understanding the interaction between prosociality and antisociality as related to natural resources governance and conservation science, integrating literatures from social psychology, evolutionary anthropology, behavioral economics, and ecology.
Resumo:
This dissertation explores the complex process of organizational change, applying a behavioral lens to understand change in processes, products, and search behaviors. Chapter 1 examines new practice adoption, exploring factors that predict the extent to which routines are adopted “as designed” within the organization. Using medical record data obtained from the hospital’s Electronic Health Record (EHR) system I develop a novel measure of the “gap” between routine “as designed” and routine “as realized.” I link this to a survey administered to the hospital’s professional staff following the adoption of a new EHR system and find that beliefs about the expected impact of the change shape fidelity of the adopted practice to its design. This relationship is more pronounced in care units with experienced professionals and less pronounced when the care unit includes departmental leadership. This research offers new insights into the determinants of routine change in organizations, in particular suggesting the beliefs held by rank-and-file members of an organization are critical in new routine adoption. Chapter 2 explores changes to products, specifically examining culling behaviors in the mobile device industry. Using a panel of quarterly mobile device sales in Germany from 2004-2009, this chapter suggests that the organization’s response to performance feedback is conditional upon the degree to which decisions are centralized. While much of the research on product exit has pointed to economic drivers or prior experience, these central finding of this chapter—that performance below aspirations decreases the rate of phase-out—suggests that firms seek local solutions when doing poorly, which is consistent with behavioral explanations of organizational action. Chapter 3 uses a novel text analysis approach to examine how the allocation of attention within organizational subunits shapes adaptation in the form of search behaviors in Motorola from 1974-1997. It develops a theory that links organizational attention to search, and the results suggest a trade-off between both attentional specialization and coupling on search scope and depth. Specifically, specialized unit attention to a more narrow set of problems increases search scope but reduces search depth; increased attentional coupling also increases search scope at the cost of depth. This novel approach and these findings help clarify extant research on the behavioral outcomes of attention allocation, which have offered mixed results.
Resumo:
INTRODUCTION: The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups. METHOD: Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions. FRAMEWORK: An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them. NEXT STEPS: We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.
Resumo:
How do infants learn word meanings? Research has established the impact of both parent and child behaviors on vocabulary development, however the processes and mechanisms underlying these relationships are still not fully understood. Much existing literature focuses on direct paths to word learning, demonstrating that parent speech and child gesture use are powerful predictors of later vocabulary. However, an additional body of research indicates that these relationships don’t always replicate, particularly when assessed in different populations, contexts, or developmental periods.
The current study examines the relationships between infant gesture, parent speech, and infant vocabulary over the course of the second year (10-22 months of age). Through the use of detailed coding of dyadic mother-child play interactions and a combination of quantitative and qualitative data analytic methods, the process of communicative development was explored. Findings reveal non-linear patterns of growth in both parent speech content and child gesture use. Analyses of contingency in dyadic interactions reveal that children are active contributors to communicative engagement through their use of gestures, shaping the type of input they receive from parents, which in turn influences child vocabulary acquisition. Recommendations for future studies and the use of nuanced methodologies to assess changes in the dynamic system of dyadic communication are discussed.
Resumo:
BACKGROUND: Shared decision-making has become the standard of care for most medical treatments. However, little is known about physician communication practices in the decision making for unstable critically ill patients with known end-stage disease. OBJECTIVE: To describe communication practices of physicians making treatment decisions for unstable critically ill patients with end-stage cancer, using the framework of shared decision-making. DESIGN: Analysis of audiotaped encounters between physicians and a standardized patient, in a high-fidelity simulation scenario, to identify best practice communication behaviors. The simulation depicted a 78-year-old man with metastatic gastric cancer, life-threatening hypoxia, and stable preferences to avoid intensive care unit (ICU) admission and intubation. Blinded coders assessed the encounters for verbal communication behaviors associated with handling emotions and discussion of end-of-life goals. We calculated a score for skill at handling emotions (0-6) and at discussing end of life goals (0-16). SUBJECTS: Twenty-seven hospital-based physicians. RESULTS: Independent variables included physician demographics and communication behaviors. We used treatment decisions (ICU admission and initiation of palliation) as a proxy for accurate identification of patient preferences. Eight physicians admitted the patient to the ICU, and 16 initiated palliation. Physicians varied, but on average demonstrated low skill at handling emotions (mean, 0.7) and moderate skill at discussing end-of-life goals (mean, 7.4). We found that skill at discussing end-of-life goals was associated with initiation of palliation (p = 0.04). CONCLUSIONS: It is possible to analyze the decision making of physicians managing unstable critically ill patients with end-stage cancer using the framework of shared decision-making.
Resumo:
OBJECTIVES: To assess the prevalence of musculoskeletal symptoms and their association with sociodemographic risk factors among female garment factory workers in Sri Lanka. METHODS: 1058 randomly selected female garment factory workers employed in the free trade zone of Kogalla, Sri Lanka were recruited to complete two interviewer-administered questionnaires assessing musculoskeletal symptoms and health behaviors. DISCUSSION: Musculoskeletal complaints among female garment workers in the FTZ of Kogalla are less common than expected. Sociocultural factors may have resulted in underreporting and similarly contribute to the low rates of healthcare utilization by these women. RESULTS: 164 (15.5%) of workers reported musculoskeletal symptoms occurring more than 3 times or lasting a week or more during the previous 12-month period. Back (57.3%) and knee (31.7%) were the most common sites of pain. Although most symptomatic women reported that their problems interfered with work and leisure activities, very few missed work as a result of their pain. Prevalence correlated positively with increased age and industry tenure of less than 12 months. Job type, body mass index, and education were not significant predictors of musculoskeletal symptoms.
Resumo:
Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization.
Resumo:
Histopathology is the clinical standard for tissue diagnosis. However, histopathology has several limitations including that it requires tissue processing, which can take 30 minutes or more, and requires a highly trained pathologist to diagnose the tissue. Additionally, the diagnosis is qualitative, and the lack of quantitation leads to possible observer-specific diagnosis. Taken together, it is difficult to diagnose tissue at the point of care using histopathology.
Several clinical situations could benefit from more rapid and automated histological processing, which could reduce the time and the number of steps required between obtaining a fresh tissue specimen and rendering a diagnosis. For example, there is need for rapid detection of residual cancer on the surface of tumor resection specimens during excisional surgeries, which is known as intraoperative tumor margin assessment. Additionally, rapid assessment of biopsy specimens at the point-of-care could enable clinicians to confirm that a suspicious lesion is successfully sampled, thus preventing an unnecessary repeat biopsy procedure. Rapid and low cost histological processing could also be potentially useful in settings lacking the human resources and equipment necessary to perform standard histologic assessment. Lastly, automated interpretation of tissue samples could potentially reduce inter-observer error, particularly in the diagnosis of borderline lesions.
To address these needs, high quality microscopic images of the tissue must be obtained in rapid timeframes, in order for a pathologic assessment to be useful for guiding the intervention. Optical microscopy is a powerful technique to obtain high-resolution images of tissue morphology in real-time at the point of care, without the need for tissue processing. In particular, a number of groups have combined fluorescence microscopy with vital fluorescent stains to visualize micro-anatomical features of thick (i.e. unsectioned or unprocessed) tissue. However, robust methods for segmentation and quantitative analysis of heterogeneous images are essential to enable automated diagnosis. Thus, the goal of this work was to obtain high resolution imaging of tissue morphology through employing fluorescence microscopy and vital fluorescent stains and to develop a quantitative strategy to segment and quantify tissue features in heterogeneous images, such as nuclei and the surrounding stroma, which will enable automated diagnosis of thick tissues.
To achieve these goals, three specific aims were proposed. The first aim was to develop an image processing method that can differentiate nuclei from background tissue heterogeneity and enable automated diagnosis of thick tissue at the point of care. A computational technique called sparse component analysis (SCA) was adapted to isolate features of interest, such as nuclei, from the background. SCA has been used previously in the image processing community for image compression, enhancement, and restoration, but has never been applied to separate distinct tissue types in a heterogeneous image. In combination with a high resolution fluorescence microendoscope (HRME) and a contrast agent acriflavine, the utility of this technique was demonstrated through imaging preclinical sarcoma tumor margins. Acriflavine localizes to the nuclei of cells where it reversibly associates with RNA and DNA. Additionally, acriflavine shows some affinity for collagen and muscle. SCA was adapted to isolate acriflavine positive features or APFs (which correspond to RNA and DNA) from background tissue heterogeneity. The circle transform (CT) was applied to the SCA output to quantify the size and density of overlapping APFs. The sensitivity of the SCA+CT approach to variations in APF size, density and background heterogeneity was demonstrated through simulations. Specifically, SCA+CT achieved the lowest errors for higher contrast ratios and larger APF sizes. When applied to tissue images of excised sarcoma margins, SCA+CT correctly isolated APFs and showed consistently increased density in tumor and tumor + muscle images compared to images containing muscle. Next, variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was further tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. The results indicate that SCA+CT can accurately delineate APFs in heterogeneous tissue, which is essential to enable automated and rapid surveillance of tissue pathology.
Two primary challenges were identified in the work in aim 1. First, while SCA can be used to isolate features, such as APFs, from heterogeneous images, its performance is limited by the contrast between APFs and the background. Second, while it is feasible to create mosaics by scanning a sarcoma tumor bed in a mouse, which is on the order of 3-7 mm in any one dimension, it is not feasible to evaluate an entire human surgical margin. Thus, improvements to the microscopic imaging system were made to (1) improve image contrast through rejecting out-of-focus background fluorescence and to (2) increase the field of view (FOV) while maintaining the sub-cellular resolution needed for delineation of nuclei. To address these challenges, a technique called structured illumination microscopy (SIM) was employed in which the entire FOV is illuminated with a defined spatial pattern rather than scanning a focal spot, such as in confocal microscopy.
Thus, the second aim was to improve image contrast and increase the FOV through employing wide-field, non-contact structured illumination microscopy and optimize the segmentation algorithm for new imaging modality. Both image contrast and FOV were increased through the development of a wide-field fluorescence SIM system. Clear improvement in image contrast was seen in structured illumination images compared to uniform illumination images. Additionally, the FOV is over 13X larger than the fluorescence microendoscope used in aim 1. Initial segmentation results of SIM images revealed that SCA is unable to segment large numbers of APFs in the tumor images. Because the FOV of the SIM system is over 13X larger than the FOV of the fluorescence microendoscope, dense collections of APFs commonly seen in tumor images could no longer be sparsely represented, and the fundamental sparsity assumption associated with SCA was no longer met. Thus, an algorithm called maximally stable extremal regions (MSER) was investigated as an alternative approach for APF segmentation in SIM images. MSER was able to accurately segment large numbers of APFs in SIM images of tumor tissue. In addition to optimizing MSER for SIM image segmentation, an optimal frequency of the illumination pattern used in SIM was carefully selected because the image signal to noise ratio (SNR) is dependent on the grid frequency. A grid frequency of 31.7 mm-1 led to the highest SNR and lowest percent error associated with MSER segmentation.
Once MSER was optimized for SIM image segmentation and the optimal grid frequency was selected, a quantitative model was developed to diagnose mouse sarcoma tumor margins that were imaged ex vivo with SIM. Tumor margins were stained with acridine orange (AO) in aim 2 because AO was found to stain the sarcoma tissue more brightly than acriflavine. Both acriflavine and AO are intravital dyes, which have been shown to stain nuclei, skeletal muscle, and collagenous stroma. A tissue-type classification model was developed to differentiate localized regions (75x75 µm) of tumor from skeletal muscle and adipose tissue based on the MSER segmentation output. Specifically, a logistic regression model was used to classify each localized region. The logistic regression model yielded an output in terms of probability (0-100%) that tumor was located within each 75x75 µm region. The model performance was tested using a receiver operator characteristic (ROC) curve analysis that revealed 77% sensitivity and 81% specificity. For margin classification, the whole margin image was divided into localized regions and this tissue-type classification model was applied. In a subset of 6 margins (3 negative, 3 positive), it was shown that with a tumor probability threshold of 50%, 8% of all regions from negative margins exceeded this threshold, while over 17% of all regions exceeded the threshold in the positive margins. Thus, 8% of regions in negative margins were considered false positives. These false positive regions are likely due to the high density of APFs present in normal tissues, which clearly demonstrates a challenge in implementing this automatic algorithm based on AO staining alone.
Thus, the third aim was to improve the specificity of the diagnostic model through leveraging other sources of contrast. Modifications were made to the SIM system to enable fluorescence imaging at a variety of wavelengths. Specifically, the SIM system was modified to enabling imaging of red fluorescent protein (RFP) expressing sarcomas, which were used to delineate the location of tumor cells within each image. Initial analysis of AO stained panels confirmed that there was room for improvement in tumor detection, particularly in regards to false positive regions that were negative for RFP. One approach for improving the specificity of the diagnostic model was to investigate using a fluorophore that was more specific to staining tumor. Specifically, tetracycline was selected because it appeared to specifically stain freshly excised tumor tissue in a matter of minutes, and was non-toxic and stable in solution. Results indicated that tetracycline staining has promise for increasing the specificity of tumor detection in SIM images of a preclinical sarcoma model and further investigation is warranted.
In conclusion, this work presents the development of a combination of tools that is capable of automated segmentation and quantification of micro-anatomical images of thick tissue. When compared to the fluorescence microendoscope, wide-field multispectral fluorescence SIM imaging provided improved image contrast, a larger FOV with comparable resolution, and the ability to image a variety of fluorophores. MSER was an appropriate and rapid approach to segment dense collections of APFs from wide-field SIM images. Variables that reflect the morphology of the tissue, such as the density, size, and shape of nuclei and nucleoli, can be used to automatically diagnose SIM images. The clinical utility of SIM imaging and MSER segmentation to detect microscopic residual disease has been demonstrated by imaging excised preclinical sarcoma margins. Ultimately, this work demonstrates that fluorescence imaging of tissue micro-anatomy combined with a specialized algorithm for delineation and quantification of features is a means for rapid, non-destructive and automated detection of microscopic disease, which could improve cancer management in a variety of clinical scenarios.