9 resultados para Aortic aneurysm

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To review the experience at a single institution with motor evoked potential (MEP) monitoring during intracranial aneurysm surgery to determine the incidence of unacceptable movement. METHODS: Neurophysiology event logs and anesthetic records from 220 craniotomies for aneurysm clipping were reviewed for unacceptable patient movement or reason for cessation of MEPs. Muscle relaxants were not given after intubation. Transcranial MEPs were recorded from bilateral abductor hallucis and abductor pollicis muscles. MEP stimulus intensity was increased up to 500 V until evoked potential responses were detectable. RESULTS: Out of 220 patients, 7 (3.2%) exhibited unacceptable movement with MEP stimulation-2 had nociception-induced movement and 5 had excessive field movement. In all but one case, MEP monitoring could be resumed, yielding a 99.5% monitoring rate. CONCLUSIONS: With the anesthetic and monitoring regimen, the authors were able to record MEPs of the upper and lower extremities in all patients and found only 3.2% demonstrated unacceptable movement. With a suitable anesthetic technique, MEP monitoring in the upper and lower extremities appears to be feasible in most patients and should not be withheld because of concern for movement during neurovascular surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Adenosine-induced transient flow arrest has been used to facilitate clip ligation of intracranial aneurysms. However, the starting dose that is most likely to produce an adequate duration of profound hypotension remains unclear. We reviewed our experience to determine the dose-response relationship and apparent perioperative safety profile of adenosine in intracranial aneurysm patients. METHODS: This case series describes 24 aneurysm clip ligation procedures performed under an anesthetic consisting of remifentanil, low-dose volatile anesthetic, and propofol in which adenosine was used. The report focuses on the doses administered; duration of systolic blood pressure <60 mm Hg (SBP(<60 mm Hg)); and any cardiovascular, neurologic, or pulmonary complications observed in the perioperative period. RESULTS: A median dose of 0.34 mg/kg ideal body weight (range: 0.29-0.44 mg/kg) resulted in a SBP(<60 mm Hg) for a median of 57 seconds (range: 26-105 seconds). There was a linear relationship between the log-transformed dose of adenosine and the duration of a SBP(<60 mm Hg) (R(2) = 0.38). Two patients developed transient, hemodynamically stable atrial fibrillation, 2 had postoperative troponin levels >0.03 ng/mL without any evidence of cardiac dysfunction, and 3 had postoperative neurologic changes. CONCLUSIONS: For intracranial aneurysms in which temporary occlusion is impractical or difficult, adenosine is capable of providing brief periods of profound systemic hypotension with low perioperative morbidity. On the basis of these data, a dose of 0.3 to 0.4 mg/kg ideal body weight may be the recommended starting dose to achieve approximately 45 seconds of profound systemic hypotension during a remifentanil/low-dose volatile anesthetic with propofol induced burst suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational fluid dynamic (CFD) studies of blood flow in cerebrovascular aneurysms have potential to improve patient treatment planning by enabling clinicians and engineers to model patient-specific geometries and compute predictors and risks prior to neurovascular intervention. However, the use of patient-specific computational models in clinical settings is unfeasible due to their complexity, computationally intensive and time-consuming nature. An important factor contributing to this challenge is the choice of outlet boundary conditions, which often involves a trade-off between physiological accuracy, patient-specificity, simplicity and speed. In this study, we analyze how resistance and impedance outlet boundary conditions affect blood flow velocities, wall shear stresses and pressure distributions in a patient-specific model of a cerebrovascular aneurysm. We also use geometrical manipulation techniques to obtain a model of the patient’s vasculature prior to aneurysm development, and study how forces and stresses may have been involved in the initiation of aneurysm growth. Our CFD results show that the nature of the prescribed outlet boundary conditions is not as important as the relative distributions of blood flow through each outlet branch. As long as the appropriate parameters are chosen to keep these flow distributions consistent with physiology, resistance boundary conditions, which are simpler, easier to use and more practical than their impedance counterparts, are sufficient to study aneurysm pathophysiology, since they predict very similar wall shear stresses, time-averaged wall shear stresses, time-averaged pressures, and blood flow patterns and velocities. The only situations where the use of impedance boundary conditions should be prioritized is if pressure waveforms are being analyzed, or if local pressure distributions are being evaluated at specific time points, especially at peak systole, where the use of resistance boundary conditions leads to unnaturally large pressure pulses. In addition, we show that in this specific patient, the region of the blood vessel where the neck of the aneurysm developed was subject to abnormally high wall shear stresses, and that regions surrounding blebs on the aneurysmal surface were subject to low, oscillatory wall shear stresses. Computational models using resistance outlet boundary conditions may be suitable to study patient-specific aneurysm progression in a clinical setting, although several other challenges must be addressed before these tools can be applied clinically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The American College of Cardiology guidelines recommend 3 months of anticoagulation after replacement of the aortic valve with a bioprosthesis. However, there remains great variability in the current clinical practice and conflicting results from clinical studies. To assist clinical decision making, we pooled the existing evidence to assess whether anticoagulation in the setting of a new bioprosthesis was associated with improved outcomes or greater risk of bleeding. METHODS AND RESULTS: We searched the PubMed database from the inception of these databases until April 2015 to identify original studies (observational studies or clinical trials) that assessed anticoagulation with warfarin in comparison with either aspirin or no antiplatelet or anticoagulant therapy. We included the studies if their outcomes included thromboembolism or stroke/transient ischemic attacks and bleeding events. Quality assessment was performed in accordance with the Newland Ottawa Scale, and random effects analysis was used to pool the data from the available studies. I(2) testing was done to assess the heterogeneity of the included studies. After screening through 170 articles, a total of 13 studies (cases=6431; controls=18210) were included in the final analyses. The use of warfarin was associated with a significantly increased risk of overall bleeding (odds ratio, 1.96; 95% confidence interval, 1.25-3.08; P<0.0001) or bleeding risk at 3 months (odds ratio, 1.92; 95% confidence interval, 1.10-3.34; P<0.0001) compared with aspirin or placebo. With regard to composite primary outcome variables (risk of venous thromboembolism, stroke, or transient ischemic attack) at 3 months, no significant difference was seen with warfarin (odds ratio, 1.13; 95% confidence interval, 0.82-1.56; P=0.67). Moreover, anticoagulation was also not shown to improve outcomes at time interval >3 months (odds ratio, 1.12; 95% confidence interval, 0.80-1.58; P=0.79). CONCLUSIONS: Contrary to the current guidelines, a meta-analysis of previous studies suggests that anticoagulation in the setting of an aortic bioprosthesis significantly increases bleeding risk without a favorable effect on thromboembolic events. Larger, randomized controlled studies should be performed to further guide this clinical practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have shown that deoxygenated human red blood cells (RBCs) converted garlic-derived polysulfides into hydrogen sulfide, which in turn produced vasorelaxation in aortic ring preparations. The vasoactivity was proposed to occur via glucose- and thiol-dependent acellular reactions. In the present study, we investigated the interaction of garlic extracts with human deoxygenated RBCs and its effect on intracellular hemoglobin molecules. The results showed that garlic extract covalently modified intraerythrocytic deoxygenated hemoglobin. The modification identified consisted of an addition of 71 atomic mass units, suggesting allylation of the cysteine residues. Consistently, purified human deoxyhemoglobin reacted with chemically pure diallyl disulfide, showing the same modification as garlic extracts. Tandem mass spectrometry analysis demonstrated that garlic extract and diallyl disulfide modified hemoglobin's beta-chain at cysteine-93 (beta-93C) or cysteine-112 (beta-112C). These results indicate that garlic-derived organic disulfides as well as pure diallyl disulfide must permeate the RBC membrane and modified deoxyhemoglobin at beta-93C or beta-112C. Although the physiological role of the reported garlic extract-induced allyl modification on human hemoglobin warrants further study, the results indicate that constituents of natural products, such as those from garlic extract, modify intracellular proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerosis and arterial injury-induced neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins beta-arrestin1 and -2 might regulate this pathological process. Deficiency of beta-arrestin2 in ldlr(-/-) mice reduced aortic atherosclerosis by 40% and decreased the prevalence of atheroma SMCs by 35%, suggesting that beta-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic wild-type, beta-arrestin1(-/-), and beta-arrestin2(-/-) mice. Neointimal hyperplasia was enhanced in beta-arrestin1(-/-) mice, and diminished in beta-arrestin2(-/-) mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with green fluorescent protein-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in beta-arrestin2(-/-) mice was not altered by transplantation with either wild-type or beta-arrestin2(-/-) bone marrow cells. After carotid injury, medial SMC extracellular signal-regulated kinase activation and proliferation were increased in beta-arrestin1(-/-) and decreased in beta-arrestin2(-/-) mice. Concordantly, thymidine incorporation and extracellular signal-regulated kinase activation and migration evoked by 7-transmembrane receptors were greater than wild type in beta-arrestin1(-/-) SMCs and less in beta-arrestin2(-/-) SMCs. Proliferation was less than wild type in beta-arrestin2(-/-) SMCs but not in beta-arrestin2(-/-) endothelial cells. We conclude that beta-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration and that these SMC activities are regulated reciprocally by beta-arrestin2 and beta-arrestin1. These findings identify inhibition of beta-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of tissue engineered constructs to replace diseased or damaged organs is limited without the incorporation of a functional vascular system. To design microvasculature that recapitulates the vascular niche functions for each tissue in the body, we investigated the following hypotheses: (1) cocultures of human umbilical cord blood-derived endothelial progenitor cells (hCB-EPCs) with mural cells can produce the microenvironmental cues necessary to support physiological microvessel formation in vitro; (2) poly(ethylene glycol) (PEG) hydrogel systems can support 3D microvessel formation by hCB-EPCs in coculture with mural cells; (3) mesenchymal cells, derived from either umbilical cord blood (MPCs) or bone marrow (MSCs), can serve as mural cells upon coculture with hCB-EPCs. Coculture ratios between 0.2 (16,000 cells/cm2) and 0.6 (48,000 cells/cm2) of hCB-EPCs plated upon 3.3 µg/ml of fibronectin-coated tissue culture plastic with (80,000 cells/cm2) of human aortic smooth muscle cells (SMCs), results in robust microvessel structures observable for several weeks in vitro. Endothelial basal media (EBM-2, Lonza) with 9% v/v fetal bovine serum (FBS) could support viability of both hCB-EPCs and SMCs. Coculture spatial arrangement of hCB-EPCs and SMCs significantly affected network formation with mixed systems showing greater connectivity and increased solution levels of angiogenic cytokines than lamellar systems. We extended this model into a 3D system by encapsulation of a 1 to 1 ratio of hCB-EPC and SMCs (30,000 cells/µl) within hydrogels of PEG-conjugated RGDS adhesive peptide (3.5 mM) and PEG-conjugated protease sensitive peptide (6 mM). Robust hCB-EPC microvessels formed within the gel with invasion up to 150 µm depths and parameters of total tubule length (12 mm/mm2), branch points (127/mm2), and average tubule thickness (27 µm). 3D hCB-EPC microvessels showed quiescence of hCB-EPCs (<1% proliferating cells), lumen formation, expression of EC proteins connexin 32 and VE-cadherin, eNOS, basement membrane formation by collagen IV and laminin, and perivascular investment of PDGFR-β+/α-SMA+ cells. MPCs present in <15% of isolations displayed >98% expression for mural markers PDGFR-β, α-SMA, NG2 and supported hCB-EPC by day 14 of coculture with total tubule lengths near 12 mm/mm2. hCB-EPCs cocultured with MSCs underwent cell loss by day 10 with a 4-fold reduction in CD31/PECAM+ cells, in comparison to controls of hCB-EPCs in SMC coculture. Changing the coculture media to endothelial growth media (EBM-2 + 2% v/v FBS + EGM-2 supplement containing VEGF, FGF-2, EGF, hydrocortisone, IGF-1, ascorbic acid, and heparin), promoted stable hCB-EPC network formation in MSC cocultures over 2 weeks in vitro, with total segment length per image area of 9 mm/mm2. Taken together, these findings demonstrate a tissue engineered system that can be utilized to evaluate vascular progenitor cells for angiogenic therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cases of Shone syndrome with severe mitral and aortic valve problems and pulmonary hypertension were referred for heart-lung transplantation. Severely elevated pulmonary vascular resistance (PVR) was confirmed as was severe periprosthetic mitral and aortic regurgitation. Based on the severity of the valve lesions in both patients, surgery was decided upon and undertaken. Both experienced early pulmonary hypertensive crises, one more than the other, that gradually subsided, followed by excellent recovery and reversal of pulmonary hypertension and PVR. These cases illustrate Braunwald's concept that pulmonary hypertension secondary to left-sided valve disease is reversible.