6 resultados para Anisotropy of magnetic susceptability (AMS)

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As indicated by several recent studies, magnetic susceptibility of the brain is influenced mainly by myelin in the white matter and by iron deposits in the deep nuclei. Myelination and iron deposition in the brain evolve both spatially and temporally. This evolution reflects an important characteristic of normal brain development and ageing. In this study, we assessed the changes of regional susceptibility in the human brain in vivo by examining the developmental and ageing process from 1 to 83 years of age. The evolution of magnetic susceptibility over this lifespan was found to display differential trajectories between the gray and the white matter. In both cortical and subcortical white matter, an initial decrease followed by a subsequent increase in magnetic susceptibility was observed, which could be fitted by a Poisson curve. In the gray matter, including the cortical gray matter and the iron-rich deep nuclei, magnetic susceptibility displayed a monotonic increase that can be described by an exponential growth. The rate of change varied according to functional and anatomical regions of the brain. For the brain nuclei, the age-related changes of susceptibility were in good agreement with the findings from R2* measurement. Our results suggest that magnetic susceptibility may provide valuable information regarding the spatial and temporal patterns of brain myelination and iron deposition during brain maturation and ageing. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical control of interactions in ultracold gases opens new fields of research by creating ``designer" interactions with high spatial and temporal resolution. However, previous optical methods using single optical fields generally suffer from atom loss due to spontaneous scattering. This thesis reports new optical methods, employing two optical fields to control interactions in ultracold gases, while suppressing spontaneous scattering by quantum interference. In this dissertation, I will discuss the experimental demonstration of two optical field methods to control narrow and broad magnetic Feshbach resonances in an ultracold gas of $^6$Li atoms. The narrow Feshbach resonance is shifted by $30$ times its width and atom loss suppressed by destructive quantum interference. Near the broad Feshbach resonance, the spontaneous lifetime of the atoms is increased from $0.5$ ms for single field methods to $400$ ms using our two optical field method. Furthermore, I report on a new theoretical model, the continuum-dressed state model, that calculates the optically induced scattering phase shift for both the broad and narrow Feshbach resonances by treating them in a unified manner. The continuum-dressed state model fits the experimental data both in shape and magnitude using only one free parameter. Using the continuum-dressed state model, I illustrate the advantages of our two optical field method over single-field optical methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological macromolecules can rearrange interdomain orientations when binding to various partners. Interdomain dynamics serve as a molecular mechanism to guide the transitions between orientations. However, our understanding of interdomain dynamics is limited because a useful description of interdomain motions requires an estimate of the probabilities of interdomain conformations, increasing complexity of the problem.

Staphylococcal protein A (SpA) has five tandem protein-binding domains and four interdomain linkers. The domains enable Staphylococcus aureus to evade the host immune system by binding to multiple host proteins including antibodies. Here, I present a study of the interdomain motions of two adjacent domains in SpA. NMR spin relaxation experiments identified a 6-residue flexible interdomain linker and interdomain motions. To quantify the anisotropy of the distribution of interdomain orientations, we measured residual dipolar couplings (RDCs) from the two domains with multiple alignments. The N-terminal domain was directly aligned by a lanthanide ion and not influenced by interdomain motions, so it acted as a reference frame to achieve motional decoupling. We also applied {\it de novo} methods to extract spatial dynamic information from RDCs and represent interdomain motions as a continuous distribution on the 3D rotational space. Significant anisotropy was observed in the distribution, indicating the motion populates some interdomain orientations more than others. Statistical thermodynamic analysis of the observed orientational distribution suggests that it is among the energetically most favorable orientational distributions for binding to antibodies. Thus, the affinity is enhanced by a pre-posed distribution of interdomain orientations while maintaining the flexibility required for function.

The protocol described above can be applied to other biological systems in general. Protein molecule calmodulin and RNA molecule trans-activation response element (TAR) also have intensive interdomain motions with relative small intradomain dynamics. Their interdomain motions were studied using our method based on published RDC data. Our results were consistent with literature results in general. The differences could be due to previous studies' use of physical models, which contain assumptions about potential energy and thus introduced non-experimental information into the interpretations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-traumatic stress disorder (PTSD) affects regions that support autobiographical memory (AM) retrieval, such as the hippocampus, amygdala and ventral medial prefrontal cortex (PFC). However, it is not well understood how PTSD may impact the neural mechanisms of memory retrieval for the personal past. We used a generic cue method combined with parametric modulation analysis and functional MRI (fMRI) to investigate the neural mechanisms affected by PTSD symptoms during the retrieval of a large sample of emotionally intense AMs. There were three main results. First, the PTSD group showed greater recruitment of the amygdala/hippocampus during the construction of negative versus positive emotionally intense AMs, when compared to controls. Second, across both the construction and elaboration phases of retrieval the PTSD group showed greater recruitment of the ventral medial PFC for negatively intense memories, but less recruitment for positively intense memories. Third, the PTSD group showed greater functional coupling between the ventral medial PFC and the amygdala for negatively intense memories, but less coupling for positively intense memories. In sum, the fMRI data suggest that there was greater recruitment and coupling of emotional brain regions during the retrieval of negatively intense AMs in the PTSD group when compared to controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging is a research and clinical tool that has been applied in a wide variety of sciences. One area of magnetic resonance imaging that has exhibited terrific promise and growth in the past decade is magnetic susceptibility imaging. Imaging tissue susceptibility provides insight into the microstructural organization and chemical properties of biological tissues, but this image contrast is not well understood. The purpose of this work is to develop effective approaches to image, assess, and model the mechanisms that generate both isotropic and anisotropic magnetic susceptibility contrast in biological tissues, including myocardium and central nervous system white matter.

This document contains the first report of MRI-measured susceptibility anisotropy in myocardium. Intact mouse heart specimens were scanned using MRI at 9.4 T to ascertain both the magnetic susceptibility and myofiber orientation of the tissue. The susceptibility anisotropy of myocardium was observed and measured by relating the apparent tissue susceptibility as a function of the myofiber angle with respect to the applied magnetic field. A multi-filament model of myocardial tissue revealed that the diamagnetically anisotropy α-helix peptide bonds in myofilament proteins are capable of producing bulk susceptibility anisotropy on a scale measurable by MRI, and are potentially the chief sources of the experimentally observed anisotropy.

The growing use of paramagnetic contrast agents in magnetic susceptibility imaging motivated a series of investigations regarding the effect of these exogenous agents on susceptibility imaging in the brain, heart, and kidney. In each of these organs, gadolinium increases susceptibility contrast and anisotropy, though the enhancements depend on the tissue type, compartmentalization of contrast agent, and complex multi-pool relaxation. In the brain, the introduction of paramagnetic contrast agents actually makes white matter tissue regions appear more diamagnetic relative to the reference susceptibility. Gadolinium-enhanced MRI yields tensor-valued susceptibility images with eigenvectors that more accurately reflect the underlying tissue orientation.

Despite the boost gadolinium provides, tensor-valued susceptibility image reconstruction is prone to image artifacts. A novel algorithm was developed to mitigate these artifacts by incorporating orientation-dependent tissue relaxation information into susceptibility tensor estimation. The technique was verified using a numerical phantom simulation, and improves susceptibility-based tractography in the brain, kidney, and heart. This work represents the first successful application of susceptibility-based tractography to a whole, intact heart.

The knowledge and tools developed throughout the course of this research were then applied to studying mouse models of Alzheimer’s disease in vivo, and studying hypertrophic human myocardium specimens ex vivo. Though a preliminary study using contrast-enhanced quantitative susceptibility mapping has revealed diamagnetic amyloid plaques associated with Alzheimer’s disease in the mouse brain ex vivo, non-contrast susceptibility imaging was unable to precisely identify these plaques in vivo. Susceptibility tensor imaging of human myocardium specimens at 9.4 T shows that susceptibility anisotropy is larger and mean susceptibility is more diamagnetic in hypertrophic tissue than in normal tissue. These findings support the hypothesis that myofilament proteins are a source of susceptibility contrast and anisotropy in myocardium. This collection of preclinical studies provides new tools and context for analyzing tissue structure, chemistry, and health in a variety of organs throughout the body.