4 resultados para Anionic substrates

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular chaperones are a highly diverse group of proteins that recognize and bind unfolded proteins to facilitate protein folding and prevent nonspecific protein aggregation. The mechanisms by which chaperones bind their protein substrates have been studied for decades. However, there are few reports about the affinity of molecular chaperones for their unfolded protein substrates. Thus, little is known about the relative binding affinities of different chaperones and about the relative binding affinities of chaperones for different unfolded protein substrates. Here we describe the application of SUPREX (stability of unpurified proteins from rates of H-D exchange), an H-D exchange and MALDI-based technique, in studying the binding interaction between the molecular chaperone Hsp33 and four different unfolded protein substrates, including citrate synthase, lactate dehydrogenase, malate dehydrogenase, and aldolase. The results of our studies suggest that the cooperativity of the Hsp33 folding-unfolding reaction increases upon binding with denatured protein substrates. This is consistent with the burial of significant hydrophobic surface area in Hsp33 when it interacts with its substrate proteins. The SUPREX-derived K(d) values for Hsp33 complexes with four different substrates were all found to be within the range of 3-300 nM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical stimuli are important factors that regulate cell proliferation, survival, metabolism and motility in a variety of cell types. The relationship between mechanical deformation of the extracellular matrix and intracellular deformation of cellular sub-regions and organelles has not been fully elucidated, but may provide new insight into the mechanisms involved in transducing mechanical stimuli to biological responses. In this study, a novel fluorescence microscopy and image analysis method was applied to examine the hypothesis that mechanical strains are fully transferred from a planar, deformable substrate to cytoplasmic and intranuclear regions within attached cells. Intracellular strains were measured in cells derived from the anulus fibrosus of the intervertebral disc when attached to an elastic silicone membrane that was subjected to tensile stretch. Measurements indicated cytoplasmic strains were similar to those of the underlying substrate, with a strain transfer ratio (STR) of 0.79. In contrast, nuclear strains were much smaller than those of the substrate, with an STR of 0.17. These findings are consistent with previous studies indicating nuclear stiffness is significantly greater than cytoplasmic stiffness, as measured using other methods. This study provides a novel method for the study of cellular mechanics, including a new technique for measuring intranuclear deformations, with evidence of differential magnitudes and patterns of strain transferred from the substrate to cell cytoplasm and nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the intrinsic pathway of apoptosis, cell-damaging signals promote the release of cytochrome c from mitochondria, triggering activation of the Apaf-1 and caspase-9 apoptosome. The ubiquitin E3 ligase MDM2 decreases the stability of the proapoptotic factor p53. We show that it also coordinated apoptotic events in a p53-independent manner by ubiquitylating the apoptosome activator CAS and the ubiquitin E3 ligase HUWE1. HUWE1 ubiquitylates the antiapoptotic factor Mcl-1, and we found that HUWE1 also ubiquitylated PP5 (protein phosphatase 5), which indirectly inhibited apoptosome activation. Breast cancers that are positive for the tyrosine receptor kinase HER2 (human epidermal growth factor receptor 2) tend to be highly aggressive. In HER2-positive breast cancer cells treated with the HER2 tyrosine kinase inhibitor lapatinib, MDM2 was degraded and HUWE1 was stabilized. In contrast, in breast cancer cells that acquired resistance to lapatinib, the abundance of MDM2 was not decreased and HUWE1 was degraded, which inhibited apoptosis, regardless of p53 status. MDM2 inhibition overcame lapatinib resistance in cells with either wild-type or mutant p53 and in xenograft models. These findings demonstrate broader, p53-independent roles for MDM2 and HUWE1 in apoptosis and specifically suggest the potential for therapy directed against MDM2 to overcome lapatinib resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central dogma of molecular biology relies on the correct Watson-Crick (WC) geometry of canonical deoxyribonucleic acid (DNA) dG•dC and dA•dT base pairs to replicate and transcribe genetic information with speed and an astonishing level of fidelity. In addition, the Watson-Crick geometry of canonical ribonucleic acid (RNA) rG•rC and rA•rU base pairs is highly conserved to ensure that proteins are translated with high fidelity. However, numerous other potential nucleobase tautomeric and ionic configurations are possible that can give rise to entirely new pairing modes between the nucleotide bases. Very early on, James Watson and Francis Crick recognized their importance and in 1953 postulated that if bases adopted one of their less energetically disfavored tautomeric forms (and later ionic forms) during replication it could lead to the formation of a mismatch with a Watson-Crick-like geometry and could give rise to “natural mutations.”

Since this time numerous studies have provided evidence in support of this hypothesis and have expanded upon it; computational studies have addressed the energetic feasibilities of different nucleobases’ tautomeric and ionic forms in siico; crystallographic studies have trapped different mismatches with WC-like geometries in polymerase or ribosome active sites. However, no direct evidence has been given for (i) the direct existence of these WC-like mismatches in canonical DNA duplex, RNA duplexes, or non-coding RNAs; (ii) which, if any, tautomeric or ionic form stabilizes the WC-like geometry. This thesis utilizes nuclear magnetic resonance (NMR) spectroscopy and rotating frame relaxation dispersion (R1ρ RD) in combination with density functional theory (DFT), biochemical assays, and targeted chemical perturbations to show that (i) dG•dT mismatches in DNA duplexes, as well as rG•rU mismatches RNA duplexes and non-coding RNAs, transiently adopt a WC-like geometry that is stabilized by (ii) an interconnected network of rapidly interconverting rare tautomers and anionic bases. These results support Watson and Crick’s tautomer hypothesis, but additionally support subsequent hypotheses invoking anionic mismatches and ultimately tie them together. This dissertation shows that a common mismatch can adopt a Watson-Crick-like geometry globally, in both DNA and RNA, and whose geometry is stabilized by a kinetically linked network of rare tautomeric and anionic bases. The studies herein also provide compelling evidence for their involvement in spontaneous replication and translation errors.