8 resultados para Anemia ferropénica
em Duke University
Resumo:
Excessive iron absorption is one of the main features of β-thalassemia and can lead to severe morbidity and mortality. Serial analyses of β-thalassemic mice indicate that while hemoglobin levels decrease over time, the concentration of iron in the liver, spleen, and kidneys markedly increases. Iron overload is associated with low levels of hepcidin, a peptide that regulates iron metabolism by triggering degradation of ferroportin, an iron-transport protein localized on absorptive enterocytes as well as hepatocytes and macrophages. Patients with β-thalassemia also have low hepcidin levels. These observations led us to hypothesize that more iron is absorbed in β-thalassemia than is required for erythropoiesis and that increasing the concentration of hepcidin in the body of such patients might be therapeutic, limiting iron overload. Here we demonstrate that a moderate increase in expression of hepcidin in β-thalassemic mice limits iron overload, decreases formation of insoluble membrane-bound globins and reactive oxygen species, and improves anemia. Mice with increased hepcidin expression also demonstrated an increase in the lifespan of their red cells, reversal of ineffective erythropoiesis and splenomegaly, and an increase in total hemoglobin levels. These data led us to suggest that therapeutics that could increase hepcidin levels or act as hepcidin agonists might help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders.
Resumo:
BACKGROUND: There have been major changes in the management of anemia in US hemodialysis patients in recent years. We sought to determine the influence of clinical trial results, safety regulations, and changes in reimbursement policy on practice. METHODS: We examined indicators of anemia management among incident and prevalent hemodialysis patients from a medium-sized dialysis provider over three time periods: (1) 2004 to 2006 (2) 2007 to 2009, and (3) 2010. Trends across the three time periods were compared using generalized estimating equations. RESULTS: Prior to 2007, the median proportion of patients with monthly hemoglobin >12 g/dL for patients on dialysis 0 to 3, 4 to 6 and 7 to 18 months, respectively, was 42%, 55% and 46% declined to 41%, 54%, and 40% after 2007, and declined more sharply in 2010 to 34%, 41%, and 30%. Median weekly Epoeitin alpha doses over the same periods were 18,000, 12,400, and 9,100 units before 2007; remained relatively unchanged from 2007 to 2009; and decreased sharply in the patients 3-6 and 6-18 months on dialysis to 10,200 and 7,800 units, respectively in 2010. Iron doses, serum ferritin, and transferrin saturation levels increased over time with more pronounced increases in 2010. CONCLUSION: Modest changes in anemia management occurred between 2007 and 2009, followed by more dramatic changes in 2010. Studies are needed to examine the effects of declining erythropoietin use and hemoglobin levels and increasing intravenous iron use on quality of life, transplantation rates, infection rates and survival.
Resumo:
In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18(-/-) mice. Moreover, primary Rad18(-/-) mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18(-/-) HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18(-/-) mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting.
Resumo:
Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency >0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We propose as an alternative explanation that variants much less common than the associated one may create "synthetic associations" by occurring, stochastically, more often in association with one of the alleles at the common site versus the other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions under which such synthetic associations will arise and how they may be recognized. We show that they are not only possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval encompassing scores of "blocks" of associated variants. In conclusion, uncommon or rare genetic variants can easily create synthetic associations that are credited to common variants, and this possibility requires careful consideration in the interpretation and follow up of GWAS signals.
Resumo:
BACKGROUND: Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). METHODS AND FINDINGS: Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. CONCLUSIONS: In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases.
Resumo:
MOTIVATION: Technological advances that allow routine identification of high-dimensional risk factors have led to high demand for statistical techniques that enable full utilization of these rich sources of information for genetics studies. Variable selection for censored outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-dimensional predictors present serious challenges. This article develops a computationally feasible method based on boosting and stability selection. Specifically, we modified the component-wise gradient boosting to improve the computational feasibility and introduced random permutation in stability selection for controlling false discoveries. RESULTS: We have proposed a high-dimensional variable selection method by incorporating stability selection to control false discovery. Comparisons between the proposed method and the commonly used univariate and Lasso approaches for variable selection reveal that the proposed method yields fewer false discoveries. The proposed method is applied to study the associations of 2339 common single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs are likely to be associated with overall survival, as reported by previous literature. Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely to modulate survival of CM patients. AVAILABILITY AND IMPLEMENTATION: The related source code and documents are freely available at https://sites.google.com/site/bestumich/issues. CONTACT: yili@umich.edu.
Resumo:
Aims: Measurement of glycated hemoglobin (HbA1c) is an important indicator of glucose control over time. Point-of-care (POC) devices allow for rapid and convenient measurement of HbA1c, greatly facilitating diabetes care. We assessed two POC analyzers in the Peruvian Amazon where laboratory-based HbA1c testing is not available.
Methods: Venous blood samples were collected from 203 individuals from six different Amazonian communities with a wide range of HbA1c, 4.4-9.0% (25-75 mmol/mol). The results of the Afinion AS100 and the DCA Vantage POC analyzers were compared to a central laboratory using the Premier Hb9210 high-performance liquid chromatography (HPLC) method. Imprecision was assessed by performing 14 successive tests of a single blood sample.
Results: The correlation coefficient r for POC and HPLC results was 0.92 for the Afinion and 0.93 for the DCA Vantage. The Afinion generated higher HbA1c results than the HPLC (mean difference = +0.56% [+6 mmol/mol]; p < 0.001), as did the DCA Vantage (mean difference = +0.32% [4 mmol/mol]). The bias observed between POC and HPLC did not vary by HbA1c level for the DCA Vantage (p = 0.190), but it did for the Afinion (p < 0.001). Imprecision results were: CV = 1.75% for the Afinion, CV = 4.01% for the DCA Vantage. Sensitivity was 100% for both devices, specificity was 48.3% for the Afinion and 85.1% for the DCA Vantage, positive predictive value (PPV) was 14.4% for the Afinion and 34.9% for the DCA Vantage, and negative predictive value (NPV) for both devices was 100%. The area under the receiver operating characteristic (ROC) curve was 0.966 for the Afinion and 0.982 for the DCA Vantage. Agreement between HPLC and POC in classifying diabetes and prediabetes status was slight for the Afinion (Kappa = 0.12) and significantly different (McNemar’s statistic = 89; p < 0.001), and moderate for the DCA Vantage (Kappa = 0.45) and significantly different (McNemar’s statistic = 28; p < 0.001).
Conclusions: Despite significant variation of HbA1c results between the Afinion and DCA Vantage analyzers compared to HPLC, we conclude that both analyzers should be considered in health clinics in the Peruvian Amazon for therapeutic adjustments if healthcare workers are aware of the differences relative to testing in a clinical laboratory. However, imprecision and bias were not low enough to recommend either device for screening purposes, and the local prevalence of anemia and malaria may interfere with diagnostic determinations for a substantial portion of the population.
Resumo:
Background: Sickle cell disease (SCD) is a debilitating genetic blood disorder that seriously impacts the quality of life of affected individuals and their families. With 85% of cases occurring in sub-Saharan Africa, it is essential to identify the barriers and facilitators of optimal outcomes for people with SCD in this setting. This study focuses on understanding the relationship between support systems and disease outcomes for SCD patients and their families in Cameroon and South Africa.
Methods: This mixed-methods study utilizes surveys and semi-structured interviews to assess the experiences of 29 SCD patients and 28 caregivers of people with SCD across three cities in two African countries: Cape Town, South Africa; Yaoundé, Cameroon; and Limbe, Cameroon.
Results: Patients in Cameroon had less treatment options, a higher frequency of pain crises, and a higher incidence of malaria than patients in South Africa. Social support networks in Cameroon consisted of both family and friends and provided emotional, financial, and physical assistance during pain crises and hospital admissions. In South Africa, patients relied on a strong medical support system and social support primarily from close family members; they were also diagnosed later in life than those in Cameroon.
Conclusions: The strength of medical support systems influences the reliance of SCD patients and their caregivers on social support systems. In Cameroon the health care system does not adequately address all factors of SCD treatment and social networks of family and friends are used to complement the care received. In South Africa, strong medical and social support systems positively affect SCD disease burden for patients and their caregivers. SCD awareness campaigns are necessary to reduce the incidence of SCD and create stronger social support networks through increased community understanding and decreased stigma.